• Title/Summary/Keyword: Coordinate Control

Search Result 748, Processing Time 0.034 seconds

Multi-Attitude Heading Reference System-based Motion-Tracking and Localization of a Person/Walking Robot (다중 자세방위기준장치 기반 사람/보행로봇의 동작추적 및 위치추정)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • An Inertial Measurement Unit (IMU)-based Attitude and Heading Reference System (AHRS) can calculate attitude and heading information with long-term accuracy and stability by combining gyro, accelerometer, and magnetic compass signals. Motivated by this characteristic of the AHRS, this paper presents a Motion-Tracking and Localization (MTL) method for a person or walking robot using multi-AHRSs. Five AHRSs are attached to the two calves, two thighs, and waist of a person/walking robot. Joints, links, and coordinate frames are defined on the body. The outputs of the AHRSs are integrated with link data. In addition, a supporting foot is distinguished from a moving foot. With this information, the locations of the joints on the local coordinate frame are calculated. The experimental results show that the presented MTL method can track the motion of and localize a person/walking robot with long-term accuracy in an infra-less environment.

Improvement of Visual Path Following through Velocity Variation (속도 가변을 통한 영상교시 기반 주행 알고리듬 성능 향상)

  • Choi, I-Sak;Ha, Jong-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.375-381
    • /
    • 2011
  • This paper deals with the improvement of visual path following through velocity variation according to the coordinate of feature points. Visual path follow first teaches driving path by selecting milestone images then follows the route by comparing the milestone image and current image. We follow the visual path following algorithm of Chen and Birchfield [8]. In [8], they use fixed translational and rotational velocity. We propose an algorithm that uses different translational velocity according to the driving condition. Translational velocity is adjusted according to the variation of the coordinate of feature points on image. Experimental results including diverse indoor cases show the feasibility of the proposed algorithm.

A study on the improvement of the robot motion control as a part of the integrated human and robot ergonomics (Integrated Human and Rob-ot Ergonomics의 측면에서 로보트의 동작제어 개선에 관한 연구)

  • 이순요;권규식;홍승권
    • Journal of the Ergonomics Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.21-27
    • /
    • 1990
  • Teaching Expert System/World Coordinate System(TES/WDS) was proposed to improve robot motion control. First, precise coordinate reading for getting the inherent data about position and posture of task objects was performed throgh the integrated image and fuzzy processing. Second, singularity and parameter limitation problems in getting the motion data about position and posture of robot in macro motion were solved by proposed geometric algorithm. Third, the unnecessary robot motion was also removed by the Robot Time and Motion (RTM) method and the Multi-Geometric Straight-Line Motion (MGSLM) method in micro motion. This results demonstrated reduction of the average teaching task time according to task order.

  • PDF

LATERAL CONTROL OF AUTONOMOUS VEHICLE USING SEVENBERG-MARQUARDT NEURAL NETWORK ALGORITHM

  • Kim, Y.-B.;Lee, K.-B.;Kim, Y.-J.;Ahn, O.-S.
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.71-78
    • /
    • 2002
  • A new control method far vision-based autonomous vehicle is proposed to determine navigation direction by analyzing lane information from a camera and to navigate a vehicle. In this paper, characteristic featured data points are extracted from lane images using a lane recognition algorithm. Then the vehicle is controlled using new Levenberg-Marquardt neural network algorithm. To verify the usefulness of the algorithm, another algorithm, which utilizes the geometric relation of a camera and vehicle, is introduced. The second one involves transformation from an image coordinate to a vehicle coordinate, then steering is determined from Ackermann angle. The steering scheme using Ackermann angle is heavily depends on the correct geometric data of a vehicle and a camera. Meanwhile, the proposed neural network algorithm does not need geometric relations and it depends on the driving style of human driver. The proposed method is superior than other referenced neural network algorithms such as conjugate gradient method or gradient decent one in autonomous lateral control .

Improved Transition Method for Sensorless Operation of Interior Permanent Magnet Synchronous Motor Drives (매입형 영구자석 동기기 센서리스 구동부의 개선된 절환 기법)

  • Han, Dong Yeob;Yoon, Jae Seung;Cho, Yongsoo;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1362-1368
    • /
    • 2016
  • This paper proposes the improved transition scheme for a sensorless drive of an interior permanent magnet synchronous motor (IPMSM). In order to operate the IPMSM, the current controller can be used until 300 rpm for the initial operation. After that, the control method of IPMSM is changed to the speed controller for the sensorless control method. At that point, the rotor speed overshoot is generated due to the rapid change of the current reference for the speed controller. The proposed algorithm is able to reduce the overshoot of a rotor speed by compensating the estimated feedforward value to the speed controller. The feedforward value of the current reference is estimated by using a coordinate transformation and is approximated to the current reference after the transition of the control mode. The effectiveness of the proposed scheme is verified by experiments using an IPMSM drive system.

A Study on Induction Motor Drives by the Direct Torque Control Technique (직접토크 제어방식을 이용한 유도전동기 구동에 관한 연구)

  • 안용상;김연충;이정호;원충연;송호범
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.394-398
    • /
    • 1999
  • Direct Torque Control method for an Induction Motor is presented which is quite different from field-oriented control. It carries out a precise and quick control of the stator flux and electromagnetic torque of an IM without calling for coordinate transformation, speed measurement, and stator current control. In principle, moreover, DTC operation requires only the knowledge of the stator resistance.

  • PDF

Study on Effective Visual Surveillance System using Dual-mode(Fixed+Pan/Tilt/Zoom) Camera (듀얼 모드(고정형+PTZ 카메라) 감시 카메라를 이용한 효과적인 화상 감시 시스템에 관한 연구)

  • Kim, Gi-Seok;Lee, Saac;Park, Jong-Seop;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.650-657
    • /
    • 2012
  • An effective dual-mode camera system(a passive wide-angle camera and a pan-tilt-zoom camera) is proposed in order to improve the performance of visual surveillance. The fixed wide-angle camera is used to monitor large open areas, but the moving objects on the images are too small to view in detail. And, the PTZ camera is capable of increasing the monitoring area and enhancing the image quality by tracking and zooming in on a specific moving target. However, its FOV (Field of View) is limited when zooming in on a specific target. Therefore, the cooperation of wide-angle and PTZ cameras is complementary. In this paper, we propose an automatic initial set-up algorithm and coordinate transform method from the wide-angle camera coordinate to the PTZ one, which are necessary to achieve the cooperation. The automatic initial set-up algorithm is able to synchronize the views of two cameras. When a moving object appears on the image plane of a wide-angle camera after the initial set-up positioning, the obtained values of the wide-angle camera should be transformed to the PTZ values based on the coordinate transform method. We also develope the PTZ control method. Various in-door and out-door experiments show that the proposed dual-camera system is feasible for the effective visual surveillance.

A Study on Smart Touch Projector System Technology Using Infrared (IR) Imaging Sensor (적외선 영상센서를 이용한 스마트 터치 프로젝터 시스템 기술 연구)

  • Lee, Kuk-Seon;Oh, Sang-Heon;Jeon, Kuk-Hui;Kang, Seong-Soo;Ryu, Dong-Hee;Kim, Byung-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.7
    • /
    • pp.870-878
    • /
    • 2012
  • Recently, very rapid development of computer and sensor technologies induces various kinds of user interface (UI) technologies based on user experience (UX). In this study, we investigate and develop a smart touch projector system technology on the basis of IR sensor and image processing. In the proposed system, a user can control computer by understanding the control events based on gesture of IR pen as an input device. In the IR image, we extract the movement (or gesture) of the devised pen and track it for recognizing gesture pattern. Also, to correct the error between the coordinate of input image sensor and display device (projector), we propose a coordinate correction algorithm to improve the accuracy of operation. Through this system technology as the next generation human-computer interaction, we can control the events of the equipped computer on the projected image screen without manipulating the computer directly.

A management system for plural viewing coordinates of multiplanar reformation (의료영상 시스템의 다중 단면 재구성을 위한 좌표계 제어 시스템)

  • Kim, Jun-Ho;Kye, Hee-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.163-170
    • /
    • 2010
  • Multi-planar reformatting(MPR) is a volume rendering technique which generates images of sectional planes users define, so that it is essential for medical imaging system. Due to the recent advances of medical imaging system, users require to place plural planes on a single dataset and to enable an individual and easy control for each plane. In this paper, we enumerate various user operations for recent MPR and analyze user requirements to update the plane equation. For the effective control of coordinate system, each plane is considered in a separated coordinate system and all informations which form a coordinate system are grouped into two components: the individual components and the common components. The proposed system is implemented on a graphics hardware, so that it smoothly performs MPR including recent requirements.

Robust stabilization of nonlinear uncertain systems without matching conditions (정합조건을 만족하지 않는 불확정 비선형 시스템의 강인 안정화)

  • 주진만;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.159-162
    • /
    • 1997
  • This paper describes robust stabilization of nonlinear single-input uncertain systems without matching conditions. We consider nonlinear systems with a vector of unknown constant parameters perturbed about a known value. The approach utilizes the generalized controller canonical form to lump the unmatched uncertainties recursively into the matched ones. This can be achieved via nonlinear coordinate transformations which depend not only on the states of the nonlinear system but also on the control input. Then the dynamic robust control law is derived and the stability result is also presented.

  • PDF