• Title/Summary/Keyword: Coordinate Control

Search Result 748, Processing Time 0.029 seconds

Assessment of the VOCs Concentration Using GIS Method of Seoul (GIS 기법을 활용한 서울시 VOCs 오염도평가에 관한 연구)

  • Park, Ki-Hark;Chung, Yong;Cho, Sung-Jun
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.2
    • /
    • pp.135-145
    • /
    • 2001
  • This study was conducted to investigate the practical using of Geographic Information System(GIS) technology which are computer-based systems that are used to store and manipulate geographic information on the air pollution control and management in the macro city. For this study 130 samples were corrected by passive sampler in Seoul (25 distincts) distributed by TM-coordinate during November in 1997 to January 1998, and analysed by GC/MSD for 16 VOCs e.g., toluene, benzene and display using Arc/view GIS(version 3.2, ESRI Inc, U.S.A) for windows. The most VOCs concentration distribution in November, 1997 was higher than that of January, 1998 except benzene and 1,1,2-trichroloethan, bromobenzene. And products of the distribution of VOCs concentration display using GIS technology was effective as well as other display methods(e.g., contouring method, pie or column chart, graduated symbols), especially in mapping and symbolization capabilities for spatial pollutant status evaluation were very effective than other display methods.

  • PDF

Comparison of the Accuracy to the Surveying Data by Terrestrial LiDAR and Total Station (지상LiDAR와 토탈스테이션에 의한 측량성과의 정확도 비교분석)

  • Yang, In-Tae;Shin, Moon-Seung;Lee, Sung-Koo;Shin, Myung-Seup
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.9-15
    • /
    • 2011
  • Nowadays, the Surveying field is growing rapidly in terms of technology such as TS(Total Station) surveying, photographic surveying, digital aerial photogrammetry, utilization of GIS(Geographic Information System) using high-resolution satellite imagery, obtaining 3D Coordinate using GPS. But control point surveying, benchmark measuring, and field Surveying are still performed by the engineers in the field. So, 3D yerrestrial laser scanner comes to the fore recently. 3D terrestrial laser scanner can get 3D coordinate about a number of sites of the subject in a short period with high accuracy. This paper compared the accuracy of data from the performance using 3D terrestrial laser scanner with that of TS. It also obtained the geopositioning accuracy result equivalent to the surveying result of TS. With further researches in the future, it is expected to be used not only in LiDAR itself but also in various areas like reconnaissance Surveying and construction by combining with TS or other Surveying equipments.

  • PDF

Development of Machine Vision System and Dimensional Analysis of the Automobile Front-Chassis-Module

  • Lee, Dong-Mok;Yang, Seung-Han;Lee, Sang-Ryong;Lee, Young-Moon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2209-2215
    • /
    • 2004
  • In the present research work, an automated machine vision system and a new algorithm to interpret the inspection data has been developed. In the past, the control of tolerance of front-chassis-module was done manually. In the present work a machine vision system and required algorithm was developed to carryout dimensional evaluation automatically. The present system is used to verify whether the automobile front-chassis-module is within the tolerance limit or not. The directional ability parameters related with front-chassis-module such as camber, caster, toe and king-pin angle are also determined using the present algorithm. The above mentioned parameters are evaluated by the pose of interlinks in the assembly of an automobile front-chassis-module. The location of ball-joint center is important factor to determine these parameters. A method to determine the location of ball-joint center using geometric features is also suggested in this paper. In the present work a 3-D best fitting method is used for determining the relationship between nominal design coordinate system and the corresponding feature coordinate system.

Correction of Image Distortion and Coordinate Calibration of the x-ray three dimensional imaging system (X선 3차원 영상 시스템에서의 영상 왜곡 및 영상 좌표계 보정)

  • 노영준;김재완;조형석;전형조;김형철;주효남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.413-413
    • /
    • 2000
  • In this paper, we propose a series of calibrations f3r the x-ray three dimensional imaging system. In the developed x-ray system, a three dimensional inner and outer shape of an object can be reconstructed out of two dimensional transmitted x-ray image set, which are acquired by projecting x-ray to the object from different views. To achieve this, a reconstruction algorithm which estimates and updates the three dimensional volume from x-ray images is developed. The algorithm is named as uniform and simultaneous algebraic reconstruction technique(USART) which is an iterative method estimating a 3D volume based on its projected images. In this method, it is assumed that the imaging conditions that are the relative positions between the x-ray sources, object and the image planes are blown. Practically it is not easy to know the three dimensional coordinate of the components of the system, since the x-ray is not visible and the image distortions are present due to the optical components in the system. In this paper, methods of correcting image distortions are present firstly. Then the coordinates of the x-ray systems are calibrated from the x-ray images of the grid pattern. Some experimental results on these calibrations are present and discussed.

  • PDF

A Study on the Mark Reader Using the Image Processing (영상처리를 이용한 Mark 판독 기법에 관한 연구)

  • 김승호;김범진;이용구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.83-83
    • /
    • 2000
  • Recently, Vision system has being used all around industry. Sensor systems are used for Mark Reader, for example, optical scanning is proximity sensor system, have many disadvantages, such as, lacking user interface and difficulty to store original specimens. In contrast with this, Vision systems for Mark Reader has many advantages, including function conversion to achieve other work, high accuracy, high speed, etc. In this thesis, we have researched the development of Mark Reader by using a Vision system. The processing course of this s)'stem is consist to Image Pre-Processing such as noise reduction, edge detection, threshold processing. And then, we have carried out camera calibration to calibrate images which are acquired from camera. After searching for reference point within scanning area(60pixe1${\times}$30pixe1), we have calculated points crossing by using line equations. And then, we decide to each ROI(region of interest) which are expressed by four points. Next we have converted absolute coordinate into relative coordinate for analysis a translation component. Finally we carry out Mark Reading with images classified by six patterns. As a result of experiment which follows the algorithm has proposed, we have get error within 0.5% from total image.

  • PDF

A Study on Decision Method of Coordinate Transformation 7-Parameters for GPS Utilization (GPS 활용을 위한 좌표변환 매개변수 결정에 관(關)한 연구(硏究) - 가평군을 중심으로 -)

  • Yang, In-Tae;Kim, Jae-Cheol;Yu, Young-Geol;Oh, Myung-Jin
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.83-92
    • /
    • 2003
  • The previous control point surveying, being standardized by trigonometric point which hasn't been unified in the whole country and producing put into operation through complex calculation process, has many problems about accurate results and economic side. Because most of trigonometric points that standardize a present surveying are in situation in top of the mountain, there are many difficulties in solving sight problems. Since trigonometric points are far away from one another, Differences are created because of limitation of point distance, observatory network construction and distribution of error. In the information age, the study about acquiring three dimension surveying information that uses GPS has been processed as fast as acquiring topography information is getting important gradually. For utilizing GPS in surveying work, deciding transformation 7-Parameters that changes data about location information which is received by GPS receiver is important. In this study, it is decided transformation 7-Parameters that can be used in ka-pyoung area by using GPS surveying production that had put into operation.

  • PDF

Mathematical Modeling for the Physical Relationship between the Coordinate Systems of IMU/GPS and Camera (IMU/GPS와 카메라 좌표계간의 물리적 관계를 위한 수학적 모델링)

  • Chon, Jae-Choon;Shibasaki, R.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.611-616
    • /
    • 2008
  • When extracting geo-referenced 3D data from cameras mounted on Mobile Mapping Systems, one of important properties for accuracy of extracted data is the alignment of the relative translation(lever-arm) and rotation(bore-sight) between the coordinate systems of Inertial Measurement Unit(IMU)/Ground Positioning System(GPS) and cameras. Since the conventional method calculates absolute camera orientation using ground control points (GCP), the alignment is determined in one Coordinated System (GPS Coordinated System). It basically require GCP. We proposed a mathematical model for the alignment using the initially uncoupled data of cameras and IMU/GPS without GCPs.

Orthoscopic real image reconstruction in integral imaging by modifying coordinate of elemental image (집적영상에서 요소영상의 좌표변환을 이용한 정치실영상 구현)

  • Jang, Jae-young;Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1646-1652
    • /
    • 2015
  • In this paper, we propose a depth conversion method for orthoscopic real image reconstruction in integral imaging. Pseudoscopic image has been regarded a problem in conventional integral imaging. the depth of reconstructed image is depending on a coordinate of an elemental image. The conversion from pseudoscopic to orthoscopic may be possible by analysing the geometrical relation between pickup and reconstruction system of elemental image. The feasibility of the proposed method has been confirmed through preliminary experiments as well as ray optical analysis.

Key-point detection of fruit for automatic harvesting of oriental melon (참외 자동 수확을 위한 과일 주요 지점 검출)

  • Seung-Woo Kang;Jung-Hoon Yun;Yong-Sik Jeong;Kyung-Chul Kim;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • In this study, we suggested a key-point detection method for robot harvesting of oriental melon. Our suggested method could be used to detect the detachment part and major composition of oriental melon. We defined four points (harvesting point, calyx, center, bottom) based on tomato with characteristics similar to those of oriental melon. The evaluation of estimated key-points was conducted by pixel error and PDK (percentage of detected key-point) index. Results showed that the average pixel error was 18.26 ± 16.62 for the x coordinate and 17.74 ± 18.07 for the y coordinate. Considering the resolution of raw images, these pixel errors were not expected to have a serious impact. The PDK score was found to be 89.5% PDK@0.5 on average. It was possible to estimate oriental melon specific key-point. As a result of this research, we believe that the proposed method can contribute to the application of harvesting robot system.

Active control of a flexible structure with time delay

  • Cai, Guo-Ping;Yang, Simon X.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.191-207
    • /
    • 2005
  • Time delay exists inevitably in active control, which may not only degrade the system performance but also render instability to the dynamic system. In this paper, a novel active controller is developed to solve the time delay problem in flexible structures. By using the independent modal space control method, the differential equation of the controlled mode with time delay is obtained from the time-delay system dynamics. Then it is discretized and changed into a first-order difference equation without any explicit time delay by augmenting the state variables. The modal controller is derived based on the augmented system using the discrete variable structure control method. The switching surface is determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from sensor measurements and the actuator control force is converted from the modal one. Since the time delay is explicitly included throughout the entire controller design without any approximation, the system performance and stability are guaranteed. Numerical simulations show that the proposed controller is feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is not explicitly included in the controller design, instability may occur.