• Title/Summary/Keyword: Cooperative control system

Search Result 335, Processing Time 0.027 seconds

Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems based on Artificial Immune System

  • Sim, Kwee-bo;Lee, Dong-wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.591-597
    • /
    • 2001
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). Immune system is living body's self-protection and self-maintenance system. These features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control school is based on clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

Mechanisms for Personalization of Documents Utilizing Environment concept in Multiuser Hypermedia System (협조 하이퍼미디어 시스템에 있어서 환경을 이용한 개별화 기구)

  • 이상훈
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.1
    • /
    • pp.114-127
    • /
    • 2001
  • To support cooperative work in various scenes by computer systems, functions of sharing personalization, observation and control are needed. Especially, in advanced cooperative work, people have various position so that sometimes one person needs to restrict behavior of another. In this paper, we describe representation of access restriction of hypermedia system, which is framework of CSCW(Computer-Supported Cooperative Works) system we developed and propose a way to go on working cooperatively with people, restricting others.

  • PDF

Online Evolution for Cooperative Behavior in Group Robot Systems

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.282-287
    • /
    • 2008
  • In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.

Design and Verification of Disturbace Observer based Controller for Windturbine with Two Cooperative Generators (두 대의 협력적인 발전기를 갖는 풍력발전기의 외란관측기 기반 제어기의 설계 및 검증)

  • Lee, Kook-Sun;Cho, Whang;Back, Ju-Hoon;Choy, Ick
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.301-308
    • /
    • 2017
  • This paper proposes a disturbance observer based controller design method for generating and yawing control of windturbine with two cooperative generators. Windturbine system with two cooperative generators is a distinct structure in which the wind energy supplied by blade axis is converted into electrical energy by two cooperative generators. In this structure, two generators can be controlled independently and therefore they can generate power, simultaneously performing yawing control of nacelle without extra yawing mechanism by cooperatively controlling generating load in appropriate manner. Using this structural trait, this paper designs a disturbance observer based controller that enables the windturbine system with cooperative generators to generate and yaw stably, and verifies the performance of the controller experimentally by applying it to a small-scale windturbine system with the same structure.

Cooperative Particle Swarm Optimization-based Model Predictive Control for Multi-Robot Formation (군집 로봇 편대 제어를 위한 협력 입자 군집 최적화 알고리즘 기반 모델 예측 제어 기법)

  • Lee, Seung-Mok;Kim, Hanguen;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.429-434
    • /
    • 2013
  • This paper proposes a CPSO (Cooperative Particle Swarm Optimization)-based MPC (Model Predictive Control) scheme to deal with formation control problem of multiple nonholonomic mobile robots. In a distributed MPC framework, each robot needs to optimize control input sequence over a finite prediction horizon considering control inputs of the other robots where their cost functions are coupled by the state variables of the neighboring robots. In order to optimize the control input sequence, a CPSO algorithm is adopted and modified to fit into the formation control problem. Experiments are performed on a group of nonholonomic mobile robots to demonstrate the effectiveness of the proposed CPSO-based MPC for multi-robot formation.

A Study on the Internal Control System of Fisheries Cooperative (수산업협동조합의 내부통제제도에 관한 연구)

  • 박이봉;최정윤
    • The Journal of Fisheries Business Administration
    • /
    • v.22 no.2
    • /
    • pp.101-148
    • /
    • 1991
  • The fisheries cooperative (FC) performs the economic and nonprofitable activity to get the fundamental objective of enhancing cooperative members' economic and social position. The internal control system fitted for a local FC should be required for not only solving the resulting problem from the complexity of FC environment nowaday but also delegating authorities and performance from FC Federation to a local FC by implementing the local autonomy. The methodology of this study is to empirically test and to analyze the condition of FC internal control system (FCICS) by the questionnaire survey. The actual condition of FCICS in Korea is analyzed by the questionnaire and the detailed contents are as follows : (1) sending 208 questionnaire consisting of 162 questions, and receiving 92 replies from 39 manufactures (business firms) and 15 banks in Gyungnam and Pusan area and 25 FC and 13 agricultural cooperative (AC) in Korea, (2) the analyzed results of FC and AC are treated simultaneously. In the fundamentals of above analyzed results, the evaluation model of FCICS is tried to construct from the relationship between the financial condition of FC and the internal control elements through the stepwise regression method. (1) By the stepwise regression method, the number of FC officials $(X_1)$, the experimental number of regular auditing $(X_7)$, and auditing duty years $(X_8)$ are finally accepted as independent variables, (2) and the final model becomes $Y=-1.53526+0.34455X_1+0.24513X_7+0.16585X_8$/ and this model explains to the extent of 47.826%. From the above study, following proposals are to be suggested: (1) The function and problem of internal control in FCICS is able to be improved by enforcing the function of FCICS and enriching the management's recognition of FCICS (2) The cooperative president can bring up good FC by the rational operation of FCICS according to the size and the performance pattern of FC, adding up to enhance members' economic and social position.

  • PDF

Decentralized Control of Cooperative Mobile Robot Systems Using Passive Velocity Field Control Method (수동 속도장 제어법을 이용한 협조 이동로봇 시스템의 분산제어)

  • 서진호;이권순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.129-138
    • /
    • 2004
  • In this paper, we propose a method to apply a decentralized control algorithm for passive velocity field control using virtual flywheel system to cooperative 3-wheeled mobile robots, and these subsystem are under nonholonomic constraints. The considered robotic systems convey a common rigid object in a horizontal plain. Moreover we will proof the passivity and robustness for cooperative mobile robotic systems with decentralized passive velocity field control. Finally, The effectiveness of proposed control algorithm is examined by numerical simulation for cooperation tasks with 3-wheeled mobile robot systems.

A Swarm System Design Based on Coupled Nonlinear Oscillators for Cooperative Behavior

  • Kim, Dong-Hun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.301-307
    • /
    • 2003
  • A control system design based on coupled nonlinear oscillators (CNOs) for a self- organized swarm system is presented. In this scheme, agents self-organize to flock and arrange group formations through attractive and repulsive forces among themselves using CNOs. Virtual agents are also used to create richer group formation patterns. The objective of the swarm control in this paper is to follow a moving target with a final group formation in the shortest possible time despite some obstacles. The simulation results have shown that the proposed scheme can effectively construct a self-organized multi-agent swarm system capable of group formation and group immigration despite the emergence of obstacles.

Review of Simultaneous Wireless Information and Power Transfer in Wireless Sensor Networks

  • Asiedu, Derek Kwaku Pobi;Shin, Suho;Koumadi, Koudjo M.;Lee, Kyoung-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.2
    • /
    • pp.105-116
    • /
    • 2019
  • Recently, there has been an increase in research on wireless sensor networks (WSNs) because they are easy to deploy in applications such as internet-of-things (IoT) and body area networks. However, WSNs have constraints in terms of power, quality-of-service (QoS), computation, and others. To overcome the power constraint issues, wireless energy harvesting has been introduced into WSNs, the application of which has been the focus of many studies. Additionally, to improve system performance in terms of achievable rate, cooperative networks are also being explored in WSNs. We present a review on current research in the area of energy harvesting in WSNs, specifically on the application of simultaneous wireless information and power transfer (SWIPT) in a cooperative sensor network. In addition, we discuss possible future extensions of SWIPT and cooperative networks in WSNs.

A Motion Planning Algorithm for Synchronizing Spatial Trajectories of Multi-Robots (다수 로봇간 공간궤적 동기화를 위한 모션계획 알고리즘)

  • Jeong Young-Do;Kim Sung-Rak;Lee Choong-Dong;Lim Hyun-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1233-1240
    • /
    • 2004
  • Recently the need for cooperative control among robots is increasing in a variety of industrial robot applications. Such a control framework enhances the efficiency of the real robotic assembly environment along with extending the robot application. In this paper, an ethernet-based cooperative control framework was proposed. The cooperative control of robots can multiply the handling capacity of robot system, and make it possible to implement jigless cooperation, due to realization of trajectory-synchronized movement between a master robot and slave robots. Coordinate transformation was used to relate among robots in a common coordinate. An optimized ethernet protocol of HiNet was developed to maximize the speed of communication and to minimize the error of synchronous movement. The proposed algorithm and optimization of network protocol was tested in several class of robots.