• Title/Summary/Keyword: Cooperative Networks

Search Result 533, Processing Time 0.022 seconds

Minimum Energy Cooperative Path Routing in All-Wireless Networks: NP-Completeness and Heuristic Algorithms

  • Li, Fulu;Wu, Kui;Lippman, Andrew
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.204-212
    • /
    • 2008
  • We study the routing problem in all-wireless networks based on cooperative transmissions. We model the minimum-energy cooperative path (MECP) problem and prove that this problem is NP-complete. We hence design an approximation algorithm called cooperative shortest path (CSP) algorithm that uses Dijkstra's algorithm as the basic building block and utilizes cooperative transmissions in the relaxation procedure. Compared with traditional non-cooperative shortest path algorithms, the CSP algorithm can achieve a higher energy saving and better balanced energy consumption among network nodes, especially when the network is in large scale. The nice features lead to a unique, scalable routing scheme that changes the high network density from the curse of congestion to the blessing of cooperative transmissions.

Cooperative and Competitive Effect in Heterogeneous Networks of Healthcare System

  • Liu, Xiaoshuang;Kang, Guixia;Zhang, Ningbo;Guo, Yanyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4405-4418
    • /
    • 2015
  • Different network provides different service. To maximize the profit, heterogeneous networks form a whole, which may either compete or cooperate with each other. In this paper, the healthcare monitor network architecture is introduced to build the competitive and cooperative mechanisms of heterogeneous networks which contain three networks, namely, cellular network, WLAN and WMAN. This paper considers the natural growth rate of the network with competitive and cooperative effects. Then, the stability of the proposed model and its equilibrium points are analyzed by the ordinary differential principle. Finally, simulation results show that the natural growth rate cannot increase the profit of the network, but effective cooperative among heterogeneous networks can increase the profit of each network, and competitive may decrease the profit of each network.

Non-Cooperative Game Joint Hidden Markov Model for Spectrum Allocation in Cognitive Radio Networks

  • Jiao, Yan
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2018
  • Spectrum allocation is a key operation in cognitive radio networks (CRNs), where secondary users (SUs) are usually selfish - to achieve itself utility maximization. In view of this context, much prior lit literature proposed spectrum allocation base on non-cooperative game models. However, the most of them proposed non-cooperative game models based on complete information of CRNs. In practical, primary users (PUs) in a dynamic wireless environment with noise uncertainty, shadowing, and fading is difficult to attain a complete information about them. In this paper, we propose a non-cooperative game joint hidden markov model scheme for spectrum allocation in CRNs. Firstly, we propose a new hidden markov model for SUs to predict the sensing results of competitors. Then, we introduce the proposed hidden markov model into the non-cooperative game. That is, it predicts the sensing results of competitors before the non-cooperative game. The simulation results show that the proposed scheme improves the energy efficiency of networks and utilization of SUs.

A Game Theoretic Study of Energy Efficient Cooperative Wireless Networks

  • Brown, Donald Richard III;Fazel, Fatemeh
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.266-276
    • /
    • 2011
  • In wireless networks, it is well-known that intermediate nodes can be used as cooperative relays to reduce the transmission energy required to reliably deliver a message to an intended destination. When the network is under a central authority, energy allocations and cooperative pairings can be assigned to optimize the overall energy efficiency of the network. In networks with autonomous selfish nodes, however, nodes may not be willing to expend energy to relay messages for others. This problem has been previously addressed through the development of extrinsic incentive mechanisms, e.g., virtual currency, or the insertion of altruistic nodes in the network to enforce cooperative behavior. This paper considers the problem of how selfish nodes can decide on an efficient energy allocation and endogenously form cooperative partnerships in wireless networks without extrinsic incentive mechanisms or altruistic nodes. Using tools from both cooperative and non-cooperative game theory, the three main contributions of this paper are (i) the development of Pareto-efficient cooperative energy allocations that can be agreed upon by selfish nodes, based on axiomatic bargaining techniques, (ii) the development of necessary and sufficient conditions under which "natural" cooperation is possible in systems with fading and non-fading channels without extrinsic incentive mechanisms or altruistic nodes, and (iii) the development of techniques to endogenously form cooperative partnerships without central control. Numerical results with orthogonal amplify-and-forward cooperation are also provided to quantify the energy efficiency of a wireless network with sources selfishly allocating transmission/relaying energy and endogenously forming cooperative partnerships with respect to a network with centrally optimized energy allocations and pairing assignments.

Cooperation Models and Cooperative Routing for Exploiting Hop-by-Hop Cooperative Diver sity in Ad Hoc Networks

  • Shin, Hee-Wook;Moh, Sang-Man;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1559-1571
    • /
    • 2011
  • In wireless ad hoc networks, nodes communicate with each other using multihop routed transmission in which hop-by-hop cooperative diversity can be effectively employed. This paper proposes (i) two cooperation models for per-link cooperation (PLC) and per-node cooperation (PNC) for exploiting cooperative diversity in wireless ad hoc networks and (ii) a cooperative routing algorithm for the above models in which best relays are selected for cooperative transmission. First, two cooperation models for PLC and PNC are introduced and represented as an edge-weighted graph with effective link quality. Then, the proposed models are transformed into a simplified graph and a cooperative routing algorithm with O(n2) time is developed, where n is the number of nodes in the network. The effectiveness of the algorithm is confirmed for the two cooperation models using simulation.

Effect of Resource Allocation in Differential Distributed Cooperative Networks with Mixed Signaling Scheme (혼합된 변조 방식을 적용한 차등 분산 협력 네트워크의 자원 할당 효과)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1131-1136
    • /
    • 2020
  • Cooperative networks enhance the performance of communication systems by combining received signals from the several relay nodes where the source node transmits signals to relay nodes. In this paper, we analyze the effect of resource allocation in cooperative networks. We assume that the cooperative networks use the conventional modulation scheme between the source and relay nodes, and adopt space-time code between the relays and destination node. Both the synchronous and differential modulations are applied for the conventional scheme and differential modulation is used for the space-time code. We consider relay location and energy allocation for resource allocation, and the performance of cooperative networks depending on the number of relay is also investigated.

Selection Based Cooperative Beamforming and Power Allocation for Relay Networks

  • Liu, Yi;Nie, Weiqing
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2011
  • Cooperative beamforming has previously been proven to be an efficient way to improve the cooperative diversity. This method generally requires all relay nodes to participate in beamforming, which can be seen as "all participate" cooperative beamforming. However, not all relay nodes have constructive impacts on the end-to-end bit error rate (BER) performance. Based on this observation, we propose a new cooperative scheme which only selects those "appropriate" relay nodes to perform cooperative beamforming. Such relay nodes can be simply determined with mean channel gains. Therefore, the selection complexity is significantly reduced as global instantaneous channel state information is not required. This scheme guarantees that energy is only allocated to the "appropriate" relay nodes, and hence provides superior diversity. We also prove that power allocation among source and selected relay nodes is a convex problem, and can be resolved with lower computational complexity. Simulation results demonstrate that our scheme achieves an essential improvement in terms of BER performance for both optimal and limited feedback scenarios, as well as high energy-efficiency for the energy-constrained networks.

Competitive Resource Sharing Based on Game Theory in Cooperative Relay Networks

  • Zhang, Guopeng;Cong, Li;Zhao, Liqiang;Yang, Kun;Zhang, Hailin
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.89-91
    • /
    • 2009
  • This letter considers the problem of resource sharing among a relay and multiple user nodes in cooperative transmission networks. We formulate this problem as a sellers' market competition and use a noncooperative game to jointly consider the benefits of the relay and the users. We also develop a distributed algorithm to search the Nash equilibrium, the solution of the game. The convergence of the proposed algorithm is analyzed. Simulation results demonstrate that the proposed game can stimulate cooperative diversity among the selfish user nodes and coordinate resource allocation among the user nodes effectively.

  • PDF

Review of Simultaneous Wireless Information and Power Transfer in Wireless Sensor Networks

  • Asiedu, Derek Kwaku Pobi;Shin, Suho;Koumadi, Koudjo M.;Lee, Kyoung-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.2
    • /
    • pp.105-116
    • /
    • 2019
  • Recently, there has been an increase in research on wireless sensor networks (WSNs) because they are easy to deploy in applications such as internet-of-things (IoT) and body area networks. However, WSNs have constraints in terms of power, quality-of-service (QoS), computation, and others. To overcome the power constraint issues, wireless energy harvesting has been introduced into WSNs, the application of which has been the focus of many studies. Additionally, to improve system performance in terms of achievable rate, cooperative networks are also being explored in WSNs. We present a review on current research in the area of energy harvesting in WSNs, specifically on the application of simultaneous wireless information and power transfer (SWIPT) in a cooperative sensor network. In addition, we discuss possible future extensions of SWIPT and cooperative networks in WSNs.

Optimal sensing period in cooperative relay cognitive radio networks

  • Zhang, Shibing;Guo, Xin;Zhang, Xiaoge;Qiu, Gongan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5249-5267
    • /
    • 2016
  • Cognitive radio is an efficient technique to improve spectrum efficiency and relieve the pressure of spectrum resources. In this paper, we investigate the spectrum sensing period in cooperative relay cognitive radio networks; analyze the relationship between the available capacity and the signal-to-noise ratio of the received signal of second users, the target probability of detection and the active probability of primary users. Finally, we derive the closed form expression of the optimal spectrum sensing period in terms of maximum throughput. We simulate the probability of false alarm and available capacity of cognitive radio networks and compare optimal spectrum sensing period scheme with fixed sensing period one in these performance. Simulation results show that the optimal sensing period makes the cognitive networks achieve the higher throughput and better spectrum sensing performance than the fixed sensing period does. Cooperative relay cognitive radio networks with optimal spectrum sensing period can achieve the high capacity and steady probability of false alarm in different target probability of detection. It provides a valuable reference for choosing the optimal spectrum sensing period in cooperative relay cognitive radio networks.