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Abstract

Spectrum allocation is a key operation in cognitive radio networks (CRNs), where secondary users (SUs) 

are usually selfish – to achieve itself utility maximization. In view of this context, much prior lit literature

proposed spectrum allocation base on non-cooperative game models. However, the most of them proposed 

non-cooperative game models based on complete information of CRNs. In practical, primary users (PUs) in 

a dynamic wireless environment with noise uncertainty, shadowing, and fading is difficult to attain a 

complete information about them. In this paper, we propose a non-cooperative game joint hidden markov 

model scheme for spectrum allocation in CRNs. Firstly, we propose a new hidden markov model for SUs to 

predict the sensing results of competitors. Then, we introduce the proposed hidden markov model into the 

non-cooperative game. That is, it predicts the sensing results of competitors before the non-cooperative

game. The simulation results show that the proposed scheme improves the energy efficiency of networks and 

utilization of SUs. 
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1. Introduction
Cognitive Radio, which is envisioned as a promising technology to promote the efficient spectrum usage, 

enables the secondary users (SUs, who unlicensed wireless users) to opportunistically access the licensed 

channels owned by primary users (PUs, who legacy spectrum holders) [1]. And, this scheme is often referred 

to as opportunistic spectrum access (OSA) [2].

A key challenge of OSA is how to resolve the spectrum allocation where is divided into some licensed 

channels competition by selfish secondary users. If multiple secondary users access the same channels 

simultaneously, collisions might occur and data rates may get reduced. In this scenario, a game theoretic 

framework is an ideal model and analyzation for cognitive radio networks in a distributed way. Due to the 

SUs selfishness, the non-cooperative game theory is closely connected to the mini/max optimization and 

typically results in the study of the various equilibria most notably the Nash equilibrium [3]. 

W. Wang et.al proposed a dynamic spectrum leasing in which the primary users actively participate in a 
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non-cooperative game with a secondary user by selecting an interference cap on the total interference they 

willing to tolerate [4]. In [5], J Elias et. al modeled a non-cooperative spectrum access game which takes into 

account the congestion comes into being when secondary user access simultaneously multiple spectrum 

bands. The non-cooperative game based two oligopoly game models are re-formulated as Cournot and 

Stackelberg games in [6]. In [7], Duong et.al proposed two non-cooperative games, which are named 

interference minimization game and capacity maximization game for reflecting the target of data radios and 

voice radios, respectively. And, J.H. Wang et.al analyze the pricing mechanism for monotone Nash 

equilibrium problems (NEPs) with global constraints and applied it to cognitive radio networks in [8].

All above literature ideally formulated the non-cooperative model base on complete information of 

cognitive radio networks. However, each SU may not be able to sense all channels due to the limitation of 

hardware or/ and sensing capability [9] or PUs in a dynamic wireless environment with noise uncertainty, 

shadowing, and fading. In other words, it is very difficult to obtain complete information (namely, imperfect 

information) of PUs or CRNs. For this reason, we proposed a non-cooperative game joint hidden markov 

model for spectrum allocation in CRNs. Furthermore, we propose a new hidden markov model to predict the 

sensing results of competitors to reduce the collision of SUs and improve the energy efficiency of CRNs and 

the utility of SUs.

In this paper, we are motivated to consider incomplete information for a non-cooperative game model 

proposed in [5]. Considering the conclusion, actions taken by SUs do not affect the evolution of the channel 

state, is drawn in [9]. We introduce a hidden Markov model to improve sensing information completeness 

for non-cooperative game proposed in [5]. Hidden markov model (HMM) widely leveraged predict channel 

states in cognitive radio networks, such as [10, 11, 12, 13]. However, since SUs are exclusiveness and 

selfishness, there is an incentive to require that SUs are able to predict the sensing results of their competitors. 

Thus, we propose a new hidden Markov model, in which SUs can predict the sensing results of their 

competitors, and introduce it into the non-cooperative game for spectrum allocation.

The rest of this paper is organized as follows. In Section 2, we give a description of the system. In Section 

3, we discuss the proposed HMM-based prediction scheme and non-cooperative game joint it in detail. The 

simulation results are discussed in Section 4. Finally, we make a conclusion in Section 5. 

2. System Model
In this paper, we consider a CRNs referred in [14], where SUs intercommunicating by exploiting channels 

unused by PUs. In order to ensure contention among SUs, we use CSMA (carrier sense multiple access) to 

randomly allocate channel times among competing SUs. We assume there are m independent and 

stochastic heterogeneous primary channels and n selfish SUs, denoted as { }1,2,...,m M= and {1, 2,..., }n N= , 

respectively. We also assume that each SU is a dedicated transmitter-receiver pair and exchange signaling 

message through the dedicated control channel. Furthermore, we divide time into equal slots of lengthT , and 

label these discrete time slots as 1, 2,...t = . Similarly to [10], we denote { } 0,1
m

tY Î as the current channel 

usage pattern of PUs; If the channel c mÎ , the ( )tY c is 1, vice versa. We denote ( )n
tX c , the c channel 

allocation decision of thn   SU at the time t .

We denote ig as the signal-to-interference ratio (SIR) of th ( )i i nÎ SU, it is defined as [11]
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where w is the available spread-spectrum bandwidth; R is information transmission rate; 2s is the 

AWGN power at the receiver, and ih is path gains. For simplicity, we represent 
w

R
a = , which is spreading 

gain. The interference to th i SUs can be denoted as ( )2   ,i j j
j i

I h p j n j is
¹

= + Î ¹å . Thus, Eq. (1) can be 

rewritten as 

i i
i

i

h p

I
g a=

From Eq. (1) we can make a conclusion- the greater interference iI , the SIR is. The interference iI

comes from the competitors of th i SUs. Hence, for th i SUs, it is significant to know whether competitors 

appear on the same channel.

3. A New Hidden Markov Model 
In much prior literature, the non-cooperative game models are introduced for spectrum allocation in CRNs, 

such as [5]. In this paper, we introduce the non-cooperative game model referred in [5]. The detail above 

non-cooperative game can be found in [5]. Hence, we will not devote a large segment to discuss it in here. 

3.1 Hidden Markov Model

In cognitive radio networks, sensing the environment is usually done by estimating the status of the 

primary user as being active or idle. It is amenable to estimating a state variable from some given noisy and 

possibility incomplete observation. Indeed, much literature formulated the problem as that of estimating the 

state of hidden markov model (HMM). In [12], authors utilized the hidden markov model for estimating the 

current channel state and predict the next channel state.

3.2 The Proposed Hidden Markov Model

The probability of thi SUs makes a decision of the channel c , is denoted as ( )( ) | ( )i
t tP X c Y c . As 

aforementioned, ( )tY c is the current channel c usage pattern of PUs, namely, the truth state of the channel

c in the interval t ; ( )i
tX c is thi SUs made a decision of channel status of the channel c . We assume k is 

binary hypothesis test, 0 means channel is occupied by PUs and vice versa. Hence, we can obtain expression 

{ }( )( ) ( ) 0,1; t tY c y c k k c mÎ = = Î and { }( )( ) ( ) 0,1;  1 ;i i
t tX c x c k k i N c mÎ = = £ £ Î .

Proposition 1: We assume thi SUs make a decision of channel status of the channel c in the interval t , 
denoted as ( )i

tx c ; the competitor thj SUs make a decision of the same channel c in the interval t , 

denoted as ( )( , )j
tx c j m j iÎ ¹ .

The probability ( )( ) | ( )j i
t tP x c x c , is shown as follows:

( ) 1,2,...

1,2,...

( ( )| ( )) ( ( )| ( )) ( ( ))

( )| ( )

( ( )| ( )) ( ( ))

j i
t t t t t

tj i
t t

j
t t t

t

P x c Y c P x c Y c PY c

P x c x c

P x c Y c PY c

=

=

=
å

å
(2)  

Proof: see Appendix A 
We propose a new hidden markov model as shown in Figure. 1 (b). As same as traditional hidden markov model (as shown in 

Figure. 1 (a)), ( )i
tx c , ( )j

tx c are observable states and ( )ty c is hidden states. In proposed hidden markov model, ( )i
tx c is 

observable states, ( )j
tx c can be considered as hidden states. From this perspective,  thi SU is able to predict ( )j

tx c . 

Proposition 2: For the same channel  ( )c c mÎ , thi SU and thj SU are competitors. If the thi SU 
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knows its sensing results of the channel c is ( )i
tx c , it also can predict the ( )j

tx c what is sensing results of 

channel c by thj SU. In another word, ( )  ( )i j
t tx c x c® conforms to hidden markov model.  

Proof: see Appendix B

In proposed hidden markov model,  ( )j
tx c can be considered as hidden states and  ( )i

tx c is the observed 

states. We represent proposed HMM as { }, ,=ω I A B , where { }( )0,1kI k= =I is initial state distribution 

probability of  ( )j
tx c ; ija=A is the transition matrix; B is output probability, where 

{ } ( ) ( ) |  ( )j i
ij t tb P x c x c= =B .

(a) Traditional hidden markov model

(b) The proposed hidden markov model

Figure.1 Traditional and proposed hidden markov

model
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3.3 HMM-based prediction scheme
The core of proposed HMM-based prediction scheme is: the thi SU can get the prior probabilities of the 

competitor- thj SU; According to Bayes’ theorem, we can obtain Eq. (3) as below 

( ( ), ( ))
( ( ) | ( ))

( ( ))

i
i t t
t t

t

p x c y c
P x c y c

p y c
= (3)

We assume ( ( ), ( )) ( ( ), ( ))i i
t t t t tQ x c y c P x c y c= and submit it to Eq. (3) to obtain Eq. (4)
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where, 1( ( ), ( ))i
t tQ x c y c can be written as 1 1 1 1( ( ), ( )) ( ( ), ( )) ( ( ) | ( ))i i i

t t k tQ x c y c P x c y c I P y c x c= = , we can obtain 

2 2 2 3 3 3( ( ), ( )), ( ( ), ( )),..., ( ( ), ( ))j j j
t t tQ x c y c Q x c y c Q x c y c .

Hence, we seek to obtain a ( )j
tx c meets Eq. (6) as below:

{ }( ) 0,1
( ( ) | ( )) max ( ( ) | ( ))j

t

j j
t t t tx c

P x c y c P x c y c
Î

= (6) 

We call this prediction scheme as HMMPS.

3.4 Hidden Markov Prediction-based Non-cooperative Game

To sum up, a new HMM prediction scheme-based non-cooperative game flow chart is shown as below.

4. Simulation
In this section, we investigate the behavior of proposed the new HMM prediction scheme-based 

non-cooperative game (HMMPS-based non-cooperative game) via simulation. The parameter values can be 

Figure. 2 The flow chart of proposed HMM-based non-cooperative 
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found in [5].

Figure 3 shows the comparison of SU transmitter power between the HMMPS-based non-cooperative 

game and non-cooperative game without prediction scheme. Since, the SU predict the competitors’ spectrum 

sensing results; if sensing results of competitors are predicted as 0, in which means the competitors will not 

join the non-cooperative game, the SU   will not pay much for accessing the channel usage. In here, the pay 

of SU is SU power, actually. Hence, SUs who are in the HMMPS-based non-cooperative game need less 

power compare to the non-cooperative game without HMMPS.

As Figure. 3 shown, the prior need less power than latter. Moreover, according to , the utility (bits per 

joule) of prior is higher than latter. Figure. 4 shows this conclusion as well. From Figure 4, we can find that 

the utility of SUs’ who are in the HMMPS-based non-cooperative game is significantly higher than the SUs 

who are in the common non-cooperative game.

Figure 5 show comparison of PU transmitter power between the HMMPS-based non-cooperative game 
and non-cooperative game without prediction scheme. Due to an SU i dynamic adaptive power control 
based competitors spectrum sensing results in HMMPS-based. The PU transmitters also only need to spend

Figure. 3 The comparison of SU transmitter power between HMMPS-based

non-cooperative game and non-cooperative game

Figure. 4 The comparison of SUs’ utility between 

HMMPS-based non-cooperative game and non-cooperative 
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power because they can know the SU active or not via prediction scheme.  

5. Conclusion
In this paper, we proposed a new hidden Markov model prediction scheme for the non-cooperative game 

in cognitive radio networks. In this prediction scheme, for a SU, where competitors’ spectrum sensing results 
are predicted rather than channel states. The non-cooperative game achieves the complete information game 
via such prediction scheme. Comparing to without such prediction scheme, it improves the power and utility 
efficiency of the SU. Furthermore, it also improves the power efficiency of the PU.

Appendix A
According to condition probability theorem, we can obtain Eq. (1) as follows

( ) ( ( ), ( ))
( ) | ( )

( ( ))

j i
j i t t

t t i
t

P x c x c
P x c x c

P x c
=                                 (1)

And according to Bayes theorem
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=                          (2)

we can rewrite by the whole probability formulate as fellow:
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t t t t t

t

P Y c P x c P Y c P x c Y c
=

= å                      (4)

thi SU, thj SU and channel c is mutual independence. Hence, Eq. (2) can be rewritten as 

Figure. 5 The comparison of PUs transmitter between HMMPS-based 

non-cooperative game and non-cooperative game



22                 Non-Cooperative Game Joint Hidden Markov Model for Spectrum Allocation in Cognitive Radio Networks

1,2,...

0,1

1,2,...

1,2,...

( ( ), ( ) | ( )) ( ( ))

( ( ) | ( ))
( ( )) ( ( ) | ( ))

( | ( )) ( ( ) | ( )) ( ( ))

             

( ( ) | ( )) ( ( ))

i j
t t t t

ti j
t t i

t t t
k

j i
t t t t t

t

T
i
t t t

t

P x c x c Y c P Y c

P x c x c
P Y c P x c Y c

P x Y c P x c Y c P Y c

P x c Y c P Y c

=

=

=

=

=

=

å

å

å

å

                 (5)

The proof is ended.

Appendix B

We describe truth states space and observed states with S and Ο ,  which are denoted as 

{ }( )( ) 0,1; ty c k k c m= = = ÎS and { }( )1 2 3( ) ( ), ( ), ( ),..., ( ) 1, 2,...;  1 ;i i i i i
t tx c x c x c x c x c t i N c m= Î = £ £ ÎΟ , respectively.

We can obtain Eq. (4) as follow
According to contingent probability definition:

( )
( ) ( ) ( )

1 2 1

1 2 1 1 2
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Base on Bayes’ rule, Eq. (1) can be rewritten as below.
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In [13], it demonstrated that ( ) ( ) ( ){ }( )1 2( ) , ,..., 1, 2,...t tY c y c y c y c t= = fits a Markov model. Therefore, we 

can obtain Eq. (3) as follows:

1 2 1

1 1 1

1
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We draw a conclusion that Ο is a Markov chain due to Eq. (3) is with Markov property. We assume 
output probabilities matrix Λ , 

( )

, 1 1

( ) | ( )  
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where ( ), ( )i j
t ty c y c is the truth states of channel c for thi and thj SU .

In addition, the proof in Appendix A, we can know as below
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Hence, ( )  ( )i j
t tx c x c® conforms to hidden markov model.

Proof End
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