• 제목/요약/키워드: Cooling plate method

검색결과 143건 처리시간 0.033초

Analysis on Enameled Container with Different Coating Thicknesses of Enamel in Pyrolysis Process (법랑공정에서 Enamel 도포두께에 따른 강판 용기의 변형 메커니즘 분석)

  • Park, Sang-Hu;Kang, Dong-Suk;Yu, Jae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제19권5호
    • /
    • pp.67-74
    • /
    • 2020
  • To predict the thermal deformation of an oven cabinet during the enamel process, we propose a simple finite element analysis method comprising two steps: heating and cooling. To this end, the basic mechanical and thermal properties such as thermal expansion of the enamel and steel plate were experimentally studied, and the mechanical properties of four different stainless steel (SUS) plates were evaluated to select the target material for the oven at high temperature conditions from 400 ℃ to 700 ℃. In the first analysis step of the enamel process, the SUS plate was heated to 850 ℃ and was then thermally expanded without considering the enamel coating. Next, assuming the perfect bonding of two materials (enamel coating and metal plate), the enamel plate was allowed to cool to room temperature till 22 ℃. From the results of comparing the experimental and analytical data, we can make a conclusion that the proposed method can be applied to evaluate the thermal deformation of enamel products. Especially, the thermal deformation of the oven can be predicted with different enamel coating conditions, such as uniform and nonuniform coating thickness.

On the material properties of shell plate formed by line heating

  • Lim, Hyung Kyun;Lee, Joo-Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.66-76
    • /
    • 2017
  • This paper is concerned with investigating the plastic material properties of steel plate formed by line heating method, and is aimed at implementing more rational design considering the accidental limit states such as collision or grounding. For the present study, line heating test for marine grade steel plate has been carried out with varying plate thickness and heating speed, and then microscopic examination and tensile test have been carried out. From the microscopic, it is found that the grain refined zones like ferrite and pearlite are formed all around the heat affected zone. From the tensile test results, it is seen that yield strength, tensile strength, fracture strain, hardening exponent and strength coefficient vary with plate thickness and heat input quantity. The formulae relating the material properties and heat input parameter should be, therefore, derived for the design purpose considering the accidental impact loading. This paper ends with describing the extension of the present study.

Effect of Forced Cooling condition along with Welding on Welding Angular Distortion (용접 후면 강제냉각조건이 용접각변형에 미치는 영향)

  • Park, Jeong-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제14권4호
    • /
    • pp.2021-2026
    • /
    • 2013
  • In this study, the effect on the welding angle distortion was reviewed by carrying out a thermal elastic-plastic analysis while changing the cooling condition(width, length, and distance from weld torch to cooling torch) the back of the welding zone for the butt weld joint. The review results revealed that maximum 57% of reduction in the angle distortion was achieved when the distance between weld torch and cooling tip of 25mm, cooling length of 80mm, and cooling width of 30mm were maintained.

Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling (가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성)

  • Hong, Sung Kook;Rhee, Dong-Ho;Cho, Hyung Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • 제8권4호
    • /
    • pp.39-47
    • /
    • 2005
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from the case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to the case without fins. As the blowing ratio increases, the effect of rectangular fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins. However, the increase of blockage effect gives more pressure loss in the channel.

Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling (가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성)

  • Hong, Sung Kook;Rhee, Dong-Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.289-296
    • /
    • 2004
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to case without fins. As the blowing ratio increases, the effect of fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins.

  • PDF

Development of Frost Thickness Measurement Method Using Optical Technique (광학적 기법에 의한 Frost 두께 측정방법의 개발)

  • Jeong, Jae-Hong;Yoon, Sang-Youl;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.654-659
    • /
    • 2001
  • A new non-contact method of the frost thickness measurement has been developed. The method is based on the digital image processing technique to identify the reflection edge of the image captured by a CCD camera under laser sheet light illumination. To insure the accuracy of frost layer thickness, an in-situ calibration procedure is carried out with a calibration target with 0.5mm holes. Using the mapping function obtained by the calibration procedure, the contour of frost surface can be estimated with sub-pixel resolutions. The developed method is applied to study the effect of cooling plate temperature on the frost thickness in a small low speed wind tunnel.

  • PDF

Film Cooling by a Row of Jets in a Gas Turbine Blade (가스터빈블레이드에서 일렬의 제트에 의한 막냉각특성 연구)

  • 이용덕;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제18권7호
    • /
    • pp.1851-1865
    • /
    • 1994
  • The objective of the present study is to predict the film cooling effectiveness by a row of holes at various injection ratios and injection angles. Numerical calculations have been performed to investigate the characteristics of flow and temperature distributions in a region near the down-stream of injection hole including the region of adverse pressure gradient. The elliptic turbulent 3-dimensional governing equations with variable thermal properties using the low-Reynolds number k-$\bar{varepsilon}$ model was solved by SIMPLE algorithm. The results showed that the presence of adverse pressure gradient and secondary vortex in the region near the downstream of injection hole induces large temperature gradent. The $45^{\circ}$ injection has higher averaged film cooling effectiveness than $60^{\circ}$ injection. But neverthless the $90^{\circ}$ injection has greater deviation from a flat plate than $45^{\circ}$ and $60^{\circ}$ injection, the $90^{\circ}$ injection has higher averaged film cooling effectiveness than $45^{\circ}$ and $60^{\circ}$ injection in the region near the downstream of injection hole.

manufacturing micro CPL (Capillary Pumped Loop)by using LIGA process (LIGA process를 이용한 micro CPL(Capillary Pumped Loop)제작)

  • Cho, Jin-Woo;Jung, Suk-Won;Park, Joon-Shik;Park, Sun-Seob
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1881-1883
    • /
    • 2001
  • We manufactured a micro CPL by LlGA process, a new conceptual ultra-fine and precise forming method, using X-ray lithography process. We fabricated a BN X-ray mask having properties of good X-ray transmittance and large mechanical strength. Micro CPL was manufactured by dividing into an upper plate and a low plate. Each of plates was bonded by Ag paste screen printing. The upper plate was fabricated on glass wafer to observe flow and phase transformation of cooling solution. The lower plate was manufactured by Cu electroplating for good heat transmission. Precision of inner Parts, micro pin and micro channel, of manufactured micro CPL is under ${\pm}2{\mu}m$.

  • PDF

Thermal-Fluid Analysis with Flow Loss Coefficient on the Inlet and Exhaust Duct of Wheel-Loader (휠로더 흡배기구의 유동손실계수를 적용한 열유동해석)

  • Jeong, Chan-Hyeok;Lee, Jae-Seok
    • Transactions of the KSME C: Technology and Education
    • /
    • 제5권2호
    • /
    • pp.97-104
    • /
    • 2017
  • In this study, we verify the accurate numerical analysis and simplify the perforated plate of inlet and exhaust duct using porous media for the cost reduction and the efficiency improvement of thermal-fluid analysis to evaluate cooling performance of wheel-loader. The flow loss coefficient of the perforated plate is defined by the experiment result. To define analytically the flow loss coefficient of the perforated plate, we calculate the pressure drop of unit-cell and compare to experiment result. Finally, we compare the heat balance test and the simplified simulation result on the inlet and exhaust duct of wheel-loader. After this study, we verify the applicability of the simplified analysis method on the inlet and exhaust duct of wheel-loader. And, foundation which can carry out effectively the evaluation and improvement for cooling performance of wheel-loader is prepared.

A Design of Thin Film Thermoelectric Cooler for Chip-on-Board(COB) Assembly (박막형 열전 소자를 이용한 Chip-on-Board(COB) 냉각 장치의 설계)

  • Yoo, Jung-Ho;Lee, Hyun-Ju;Kim, Nam-Jae;Kim, Shi-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제59권9호
    • /
    • pp.1615-1620
    • /
    • 2010
  • A thin film thermoelectric cooler for COB direct assembly was proposed and the COB cooler structure was modeled by electrical equivalent circuit by using SPICE model of thermoelectric devices. The embedded cooler attached between the die chip and metal plate can offer the possibility of thin film active cooling for the COB direct assembly. We proposed a driving method of TEC by using pulse width modulation technique. The optimum power to the TEC is simulated by using a SPICE model of thermoelectric device and passive components representing thermal resistance and capacitance. The measured and simulated results offer the possibility of thin film active cooling for the COB direct assembly.