The gold-silver vein deposits in the Mugeug mineralized area are emplaced in late Cretaceous biotite granite associated with the pull-apart type Cretaceous Eumseong basin. Mugeug mine in northern part is composed of multiple veins showing relatively high gold fineness and is characterized by sericitization, chloritization and epidotization. The ore-forming fluids were evolved by dilution and cooling mechanisms at relatively high temperature and salinity (=30$0^{\circ}C$,1~9 equiv. wt. % NaCl) and highly-evolved meteoric water ($\delta$$^{18}$ O;-1.2~3.7$\textperthousand$) and gold mineralization associated with sulfides tormed at temperatures between 260 and 22$0^{\circ}C$ and within sulfur fugacity range of 10$^{-11.5}$ ~ 10$^{-13.5}$ atm. In contrast, Geumwang, Geumbong and Taegueg mines show the low fineness values, in southern part are characterized by increasing tendency of simple and/or stockwork veins and by kaolinitization, silicificatitan, carbonatization and smectitization. These droposits formed at relatively low temperature and salinity (<23$0^{\circ}C$, <3 equiv. wt. % NaCl) from ore-forming fluids containing greater amounts of less-evolved meteoric waters ($\delta$$^{18}$ O;-5.5~4.0$\textperthousand$), and silver mineralization representing various gold-and/or silver-bearing minerals formed at temperatures between 200 and 15$0^{\circ}C$ and from sulfur fugacity range of 10$^{-15}$ ~10$^{-18}$ atm These results imply that mineralization in the Mugueg area formed at shallow-crustal level and categorize these deposits as low-sulfidation epithermal type. The genetic differences between the northern and southern parts reflect the evolution of the hydrothermal system due to a different physicochemical environment from heat source area (Mugeug mine) to marginal area (Taegeum mine) in a geothermal field.
We investigate the geological history that formed geology and landscapes of the Juwangsan National Park and its surrounding areas. The Juwangsan area is composed of Precambrian gneisses, Paleozoic metasedimentary rocks, Permian to Triassic plutonic rocks, Early Mesozoic sedimentary rocks, Late Mesozoic plutonic and volcanic rocks, Cenozoic Tertiary rhyolites and Quaternary taluses. The Precambrian gneisses and Paleozoic metasedimentary rocks of the Ryeongnam massif occurs as xenolithes and roof-pendents in the Permian to Triassic Yeongdeok and Cheongsong plutonic rocks, which were formed as the Songrim orogeny by magmatic intrusions occurring in a subduction environment under the northeastern and western parts of the area before a continental collision between Sino-Korean and South China lands. The Cheongsong plutonic rocks were intruded by the Late Triassic granodiorite, which include to be metamorphosed as an orthogneiss. The granodiorite includes geosites of orbicular structure and mineral spring. During the Cretaceous, the Gyeongsang Basin and Gyeongsang arc were formed by a subduction of the Izanagi plate below East Asia continent in the southeastern Korean Peninsula. The Gyeongsang Basin was developed to separate into Yeongyang and Cheongsong subbasins, in which deposited Dongwach/Hupyeongdong Formation, Gasongdong/Jeomgok Formation, and Dogyedong/Sagok Formation in turn. There was intercalated by the Daejeonsa Basalt in the upper part of Dogyedong Formation in Juwangsan entrance. During the Late Cretaceous 75~77 Ma, the Bunam granitoid stock, which consists of various lithofacies in southwestern part, was made by a plutonism that was mixing to have an injection of mafic magma into felsic magma. During the latest Cretaceous, the volcanic rocks were made by several volcanisms from ubiquitous andesitic and rhyolitic magmas, and stratigraphically consist of Ipbong Andesite derived from Dalsan, Jipum Volcanics from Jipum, Naeyeonsan Tuff from Cheongha, Juwangsan Tuff from Dalsan, Neogudong Formation and Muposan Tuff. Especially the Juwangsan Tuff includes many beautiful cliffs, cayon, caves and falls because of vertical columnar joints by cooling in the dense welding zone. During the Cenozoic Tertiary, rhyolite intrusions formed lacolith, stocks and dykes in many sites. Especially many rhyolite dykes make a radial Cheongsong dyke swarm, of which spherulitic rhyolite dykes have various floral patterns. During the Quaternary, some taluses have been developed down the cliffs of Jungtaesan lacolith and Muposan Tuff.
Journal of the Korean Association of Geographic Information Studies
/
v.22
no.2
/
pp.152-171
/
2019
In this study, we analyzed the characteristics of the cold air generated in Hannamgeumbuk and Geumbuk-Jeongmaek and proposed their management strategies. We also suggested management strategies after analyzing detailed cold airflows for Cheongju located Hannamgeumbuk-Jeongmaek and we compared the degree of nighttime temperature reduction of the Jeongmaek by using data obtained from observatories located on Cheongju. We used KALM(Kaltluftabflussmodell), a cold air simulation model developed in Germanay and identified both cold airflows and altitude of cold air layers generated during 360minutes at night. As a result, the cold airflow generated in the Jeongmaek became strong and the cold air was appeared clearly in the western part of the Hannamgeumbuk-Jeongamek and in the northern part of the Geumbuk-Jeongmaek. The average velocity of cold airflow was recorded at 0.45m/s, and the maximum speed of cold airflow was recorded at 2.70m/s. The average height of the cold air layer was 104.27m/s and the maximum thickness was 255.0m. The average velocity of cold airflows in Cheongju was 0.51m/s and the average height of cold air layer was 48.87m high. The highest degree of nighttime temperature reduction appeared in the Cheongnamdae observatory($-3.8^{\circ}C$), where the altitude of the cold air layer is high. The results showed that cooling effect of Jeongmaek actually affected the temperature reduction during nighttime. Based on the results, we designated the main mountain area of the Jeongmaek with active cold air generation as "cold air conservation areas" and proposed the current forest and topography conservation. We also proposed to designate areas that facilitate the cold airflows as "cold air management areas" and to complement the function of Jeongmaek. This study could support the establishment of systematic management plans of the Jeongmaek. In addition, it is expected that the results can be applied as basic data for ventilation paths of Cheongju.
KSCE Journal of Civil and Environmental Engineering Research
/
v.42
no.6
/
pp.815-824
/
2022
Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.
The age unknown Ogcheon metasedimentary rocks and the Jurassic Ogcheon granite (Jocgr) intruding it are distributed in the Ogcheon area, which is located in the central part of the Ogcheon Belt, Korea, This paper newly examines the timing of Honam shearing on the basis of the microstructural researches on time-relationship between the crenulation of Ogcheon metasedimentary rocks and the contact metamorphism by the intrusion of Jocgr. The D2 crenulation phase, which is defined by the microfolding of the S1 foliation in the metasedimentary rocks, is divided into two sub-phases. The one is a sub-phase of Early crenulation (D2a) which is included within old andalusite porphyroblasts, and the other is that of Late crenulation (D2b) which warps around the old andalusite. But they show the same dextral shear sense, the axial planes parallel to each other, and a single crenulation at outcrop scale. The contact metamorphism of andalusite-sillimanite type by the Jocgr occurred during the inter-phases of D2a and D2b, and crystallized the old andalusite masking the D2a crenulation and fibrous sillimanites replacing the D2a crenulation-forming muscovites. New andalusite porphyroblasts synkinematically grew in pressure shadows around the old andalusite or in its outermost mantles during the early stage of the D2b. The D2b occurred still continuously after the growth of the andalusite ceased (= later stage of the D2b). It indicates that the D2b occurred continuously during the period when the Ogcheon granite was still hot and cool. From this study, the crenulation history of Ogcheon metasedimentary rocks and the timing of Honam shearing would be newly established and reviewed as follows. (1) Early Honam shearing; formative period of Early crenulation, (2) main magmatic period of Jurassic granitoids; growth of the old andalusite and fibrous sillimanite by the intrusion of Jocgr, (3) main cooling period of Jurassic granitoids; formative period of Late crenulation related to Late Honam shearing, growth of the new andalusite in the early stage of D2b. Thus, this study proposes that the Honam shear movement would occur two times at least before and after the intertectonic phase which corresponds to the main magmatic period of Jurassic granitoids.
We investigated the relative errors of satellite-observed Surface Skin Temperature (SST) data caused by sea ice in the northern hemispheric ocean ($30-90^{\circ}N$) during April 16-24, 2003-2014 by intercomparing MODerate Resolution Imaging Spectroradiometer (MODIS) Ice Surface Temperature (IST) data with two types of Atmospheric Infrared Sounder (AIRS) SST data including one with the AIRS/Advanced Microwave Sounding Unit-A (AMSU) and the other with 'AIRS only'. The MODIS temperatures, compared to the AIRS/AMSU, were systematically up to ~1.6 K high near the sea ice boundaries but up to ~2 K low in the sea ice regions. The main reason of the difference of skin temperatures is that the MODIS algorithm used infrared channels for the sea ice detection (i.e., surface classification), while microwave channels were additionally utilized in the AIRS/AMSU. The 'AIRS only' algorithm has been developed from NASA's Goddard Space Flight Center (NASA/GSFC) to prepare for the degradation of AMSU-A by revising part of the AIRS/AMSU algorithm. The SST of 'AIRS only' compared to AIRS/AMSU showed a bias of 0.13 K with RMSE of 0.55 K over the $30-90^{\circ}N$ region. The difference between AIRS/AMSU and 'AIRS only' was larger over the sea ice boundary than in other regions because the 'AIRS only' algorithm utilized the GCM temperature product (NOAA Global Forecast System) over seasonally-varying frozen oceans instead of the AMSU microwave data. Three kinds of the skin temperatures consistently showed significant warming trends ($0.23-0.28Kyr^{-1}$) in the latitude band of $70-80^{\circ}N$. The systematic disagreement among the skin temperatures could affect the discrepancies of their trends in the same direction of either warming or cooling.
In order to study the baking properties of various composite flours, naked barley flour, corn flour, potato flour, and sweet potato flour were added to the hard wheat flour respectively in a ratio of 3 : 7. Using above composite flours, effects of glyceryl monosterate (GMS), sodium stearyl lactylate (SSL), calcium stearyl lactylate (CSL), xanthan gum (XG) and polysaccharide (PS) were also examined in terms of sedimentation test, viscosity by amylograph and baking test. The results are as follows: 1) Sedimentation value decreased in the order of hard wheat flour (58), corn flour (47), potato flour (46), sweet potato flour (33). and barley flour (23). Significant effects of additives were observed for all of flours as well as for the composite flours. The most prominant result of additives was obtained with the composite flour of barley and wheat. Among the additives, mixtures of GMS and SSL at 1% final concentration and that of GMS and SSL at the same concentration increased the sedimentation value considerably. No sedimentation measurement, however, was possible for XG since the compound was precipitated by acid during experiment of sedimentation. 2) Effects of additives on the viscosity were determined by amylograph. The mixtures of GMS 1%+SSL 1% and GMS 1%+CSL 1% increased gelatinization point,maximum viscosity and cooling viscosity. GMS 1%+XG 1% or GMS 1%+PS 1% showed less effects. 3) GMS 1%+CSL 0.5% increased the specific loaf volume of bread produced from the composite flour of naked barley and wheat, and appearance, taste and texture of the product were very similar to those of the standard bread produced from wheat flour. GMS 1%+SSL 0.5%, however, increased the loaf volume of bread produced from the composite flours of corn, potato and sweet potato, and wheat. No effects were obtained with XG and PS, except slight improvement of the texture of bread. 4) No specific loaf volume of bread produced from the composite flour of barley and wheat was increased when 1% of SSL, CSL, XG or PS was used separately.
The natural change of winter night temperature from 00:00 to 04:30 O'clock with the different height of thermal screen in a venlo type glasshouse (W59×L68×H5.9 m) was studied using computational fluid dynamics (CFD). At the early stage of CFD analysis, the room temperature decrease of glasshouse with the 5.9 m height of thermal screen were faster than it with the 4.1m height of thermal screen, but at 2 hr after analysis it was slower than in it with the 4,1m, the temperature difference was 0.6℃ after 4 hr. If we consider that turn on the heater when the temperature were decrease below 13℃ at 1hr after CFD analysis, it is good for energy saving in the glasshouse with the 4.1 m height of thermal screen rather than in it with the 5.9 m height, because of the temperature decrease were slow during 2 hrs after analysis. The airflow at the height of 2 m which were grown tomato were fast and wide in the glasshouse with the 5.9 m height thermal screen rather than in it with the 4.1 m, the speed difference was 0.034m·s-1 at 1hr after CFD analysis. The effect of temperature decrease in summer season were compared with the different height of shading screen from 12:00 to 14:30 O'clock. The height of shading screen were 5.7, 3.9 m, the gap of it were 30%. The air-inflow quantity by the fan with duct at lower part of venlo glasshouse was 0.67 ㎥·s-1 until 1hr and to increase 3 times of it from 1hr after analysis. The roof window were open 100%. Until 1hr of CFD analysis, the temperature in the 30% open of shading screen was 0.9℃ higher than in the none shading screen. From 13:00 O'clock when the air-inlet quantity to increase 3 times, the temperature in case 30% gap of shading screen were decreased compare with the none shading screen, the temperature difference was 0.5℃ at 14:30 O'clock. The temperature on the floor surface in case 30% gap of shading screen were lower with it's height increase, the temperature difference was 8℃ compare with none shading screen. The relative humidity difference were insignificant by the height and gap of shading screen.
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.8
no.4
/
pp.319-327
/
2010
A nuclear plant ESF ACS simulator was designed, built, and verified to perform experiment related to ESF ACS of nuclear power plants. The dimension of 3D CAD model was based on drawings of the main control room(MCR) of Yonggwang units 5 and 6. The CFD analysis was performed based on the measurement of the actual flow rate of ESF ACS. The air flowing in ACS was assumed to have $30^{\circ}C$ and uniform flow. The flow rate across the HEPA filter was estimated to be 1.83 m/s based on the MCR ACS flow rate of 12,986 CFM and HEPA filter area of 9 filters having effective area of $610{\times}610mm^2$ each. When MCR ACS was modeled, air flow blocking filter frames were considered for better simulation of the real ACS. In CFD analysis, the air flow rate in the lower part of the active carbon adsorber was simulated separately at higher than 7 m/s to reflect the measured value of 8 m/s. Through the CFD analyses of the ACSes of fuel building emergency ventilation system, emergency core cooling system equipment room ventilation cleanup system, it was confirmed that all three EFS ACSes can be simulated by controlling the flow rate of the simulator. After the CFD analysis, the simulator was built in nuclear grade and its reliability was verified through air flow distribution tests before it was used in main tests. The verification result showed that distribution of the internal flow was uniform except near the filter frames when medium filter was installed. The simulator was used in the tests to confirm the revised contents in Reg. Guide 1.52 (Rev. 3).
The antimony deposits of the Hyundong mine, located in the northeastern part of the Sobaegsan massif, occur as hydrothermal quartz+carbonate veins and stockworks which fill the fault fractures developed in Precambrian metamOlphic rocks (mainly, granitic gneiss). Hydrothermal alteration occurs commonly in the vicinity of mineralized veins and is characterized by sericitization and silicification. A K-Ar age of alteration sericite is 139.2$\pm$ 4.4 Ma, implying the early Cretaceous age of mineralization, possibly in association with intrusion of nearby acidic dikes (mainly, quartz porphyry). The hydrothermal mineralization occurred in five mineralization stages. These are: (I) stage I, characterized by deposition of chalcedonic quartz; (2) stage II, deposition of quartz with base-metal sulfides and stibnite; (3) stage III, deposition of quartz and carbonates (calcite, dolomite, ankerite, rhodochrosite) with various antimony-bearing minerals such as stibnite, polybasite, berthierite, native antimony, gudmundite and ullmannite; (4) stage IV, deposition of calcite with stibnite; and (5) stage V, deposition of barren calcite. Antimony occurs mostly as stibnite within stages II to IV veins, which has various habits including disseminated, veinlets and euhedral coarse crystals. Fluid inclusion studies indicate that hydrothermal mineralization at Hyundong occurred from the fluids with temperature and salinity of $330^{\circ}$C to 120 and 5.3 wI. % equiv. NaCI. The temperature and salinity of ore fluids systematically decreased with elapsed time in the course of mineralization, possibly due to the influx of larger amounts of meteoric groundwater. The deposition of antimony-bearing minerals occurred at low temperatures «$250^{\circ}$C), mainly due to the cooling and dilution of fluids. Based on the evidence of fluid boiling during the early stage II mineralization, the mineralization occurred under low pressure conditions (about 80 bars, corresponding to depths of about 350 m under hydrostatic pressure regime). Thermodynamic considerations of ore . mineral assemblages indicate that antimony deposition also occurred as the results of decreases in temperature and sulfur fugacity of hydrothermal fluids. Calculated sulfur isotope composition of ore fluids ($\delta^{34}S_{\Sigma s}$=5.4 to 7.8$\textperthousand$) indicates an igneous source of sulfur.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.