• Title/Summary/Keyword: Cooling liner

Search Result 37, Processing Time 0.024 seconds

Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions (냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성)

  • Ham, Jin-Ki;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.

Performance Characteristics of Vehicle Air Conditioning System Using Internal Heat Exchanger with Inner Fin (휜 타입 내부열교환기 적용에 따른 차량용 냉방시스템 성능 특성)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2013
  • Internal heat exchanger (IHX) apparatus using the temperature difference between high and low pressure lines in vehicle air conditioning system is a good method to enhance the cooling performance. In this study, we designed various double-pipe internal heat exchangers which have inner fins between the internal pipe and external pipe. We also measured the performance characteristic (pressure drop, cooling capacity, compressor work and coefficient of performance (COP)) of the modified internal heat exchangers that had the change of the fin height and the inside shape of the internal pipe. This experimental results indicated that the liner and serration type internal heat exchanger was the best cooling performance. In addition, the air conditioning system with the liner and serration type internal heat exchanger showed the improved performances of about 6.4% and 9.2%, respectively, for the cooling capacity and COP.

Development of Subminiature Type 3 Composite Pressure Vessel for Cooling Unit in Electric Appliances (전자제품 쿨링 유닛용 초소형 타입 복합재 압력용기 개발)

  • Cho, Sung-Min;Lee, Seung-kuk;Moon, Jong-sam;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.151-157
    • /
    • 2018
  • In this study, we have developed a composite pressure vessel that is compact and can store refrigerant at high pressure to increase the refrigerant volume. The composite pressure vessel is made of aluminum-based duralumin, which has high rigidity and excellent elongation in the inner liner, considering the characteristics of products in the aerospace and defense industry, where the safety of the applied product is considered as a priority. High strength carbon fiber was applied to the outside. In order to evaluate the performance of the developed product, burst test and cycling test were carried out. In burst test, an excellent safety margin equivalent to 2.7 times the operating pressure was obtained. In cycling test, a stable failure mode in which 'pre-burst leak' occurs is proved and the soundness of the product is proved.

Cooling Performance Analysis of Regeneratively Cooled Combustion Chamber (재생냉각 연소실의 냉각성능 해석)

  • Cho, Won-Kook;Seol, Woo-Seok;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.67-72
    • /
    • 2004
  • A regenerative cooling system has been designed through empirical 1-D analysis for a liquid rocket engine of 30-ton-level thrust. The hot-gas-side wall temperature from 1-D analysis shows 100K difference compared to 3D CFD analysis. Two variations of design with same cooling performance are suggested for different maximum channel widths i.e., 4mm and 2mm. The coolant pressure drop of the latter design is higher by 20%. The maximum liner temperature is about 700K when TBC and the thermal resistance of carbon deposit are considered. So film cooling is recommended to increase the cooling capacity as the present cooling capacity is insufficient

The Heat Transfer Analysis of the First Stage Blade (발전용 가스터빈 1단 동익 열전달 해석)

  • Hong, Yong-Ju;Choi, Bum-Seog;Park, Byung-Gyu;Yoon, Eui-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.30-35
    • /
    • 2001
  • To get higher efficiency of gas turbine, The designer should have more higher turbine inlet temperature (TIT). Today, modem gas turbine having sophisticated cooling scheme has TIT above $1,700^{\circ}C$. In the korea, many gas turbine having TIT above $1,300^{\circ}C$ was imported and being operated, but the gas with high TIT above $1,300^{\circ}C$ in the turbine will give damage to liner of combustor, and blade of turbine and etc. So frequently maintenance for parts enduring high temperature was performed. In this study, the heat transfer analysis of cooling air in the internal cooling channel (network analysis) and temperature analysis of the blade (Finite Element Analysis) in the first stage rotor was conducted for development of the optimal cooling passage design procedure. The results of network analysis and FEM analysis of blade show that the high temperature spot are occured at the leading edge, trailing edge near tip, and platform. so to get more reliable performance of gas turbine, the more efficient cooling method should be applied at the leading edge and tip section. and the thermal barrier coating on the blade surface has important role in cooling blade.

  • PDF

A study on the heat dissipation of diesel engine (디이젤기관의 방열에 관한 연구)

  • 이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.39-50
    • /
    • 1980
  • This paper presents the variations obtained in heat flow rate and engine performance of a four-stroke cycle Diesel engine when there were changes in the temperature of cooling water, compression ratio, injection timing of fuel, and other factors. Heat dissipation of engine cylinder was calculated by the heat transfer coefficient of Nusselt's empirical equation and the analysis of distribution of temperature in cylinder barrel was obtained by the finite element method of two-dimensional steady state heat conduction. In this experiment, the out side temperature of cylinder liner was measured by the data logger, and the temperature distribution of liner was computed by the analysis of triangular finite element model under the assumption due to surface heat flux of cylinder inner surface. The results obtained by this study are as follows. Under the given operating condition, the temperature distribution of cylinder liner by using finite element method shows that the mean temperature of barrel is in accordance with the experimental results of Eichelberg and temperature difference is lower than 4.23.deg. C. The heat dissipation of engine decrease in accordance with the decrease of piston mean velocity, compression ratio, and the increase of coolant temperature. Influence on the delay of injection timing of fuel brings about the decrease of heat rejection over the cylinder at constant test conditions.

  • PDF

A Study on Improving the Enhanced Durability of Cylinder Liner according to Cavitation Influence of Combat Equipment Engine (전투장비 엔진의 캐비테이션 영향에 따른 실린더 라이너의 내구성 강화 방안에 관한 연구)

  • Kim, Daeun;Lee, Kijung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.1-8
    • /
    • 2021
  • Cylinder liners used in diesel engines of combat equipment are prone to cavitation due to wet cooling. The damage caused by erosion and corrosion due to cavitation has a fatal effect on the performance and lifespan of a diesel engine. Therefore, a study was conducted to improve the durability of cylinder liners. Two surface treatment techniques were proposed: nitriding and chrome plating. It was observed that the amount of erosion on the surface of nitride-treated cylinder liners was high because the surface-treated part eroded due to its weak impact resistance against the bubble explosion generated by cavitation. In contrast, the chrome-plated cylinder liner had a lower amount of erosion among the specimens subjected to the accelerated test. These results verified that the resistance of chrome-plated liners against cavitation is high. Therefore, it can withstand the impact of bubble explosion. If the chrome plating thickness is set with reference to the KS standard, an exceptional durability of abrasion, wear resistance, and corrosion resistance can be obtained. If the thickness is set between 120~250㎛, it is expected that the durability of the cylinder liner can be improved. Although a recovery method for corroded cylinder liners is suggested, the proposed method has an inherent risk of crack generation. Therefore, further research is required to solve this problem.

Heat/Mass Transfer on Effusion Plate with Circular Pin Fins for Impingement/Effusion Cooling System with Intial Crossflow (초기 횡방향 유동이 존재하는 충돌제트/유출냉각에서 원형핀이 설치된 유출면에서의 열/물질전달 특성)

  • Hong Sung Kook;Rhee Dong-Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.828-836
    • /
    • 2005
  • Impingement/effusion cooling technique is used for combustor liner or turbine parts cooling in gas turbine engine. In the impingement/effusion cooling system, the crossflow generated in the cooling channel induces an adverse effect on the cooling performance, which consequently affects the durability of the cooling system. In the present study, to reduce the adverse effect of the crossflow and improve the cooling performance, circular pin fins are installed in impingement/effusion cooling system and the heat transfer characteristics are investigated. The pin fins are installed between two perforated plates and the crossflow passes between these two plates. A blowing ratio is changed from 0.5 to 1.5 for the fixed jet Reynolds number of 10,000 and five circular pin fin arrangements are considered in this study. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The results show that local distributions of heat/mass transfer coefficient are changed due to the installation of pin fins. Due to the generation of vortex and wake by the pin fin, locally low heat/mass transfer regions are reduced. Moreover, the pin fin prevents the wall jet from being swept away, resulting in the increase of heat/mass transfer. When the pin fin is installed in front of the impinging let, the blockage effect on the crossflow enhances the heat/mass transfer. However, the pin fin installed just behind the impinging jet blocks up the wall jet, decreasing the heat/mass transfer. As the blowing ratio increases, the pin fins lead to the higher Sh value compared to the case without pin fins, inducing $16\%{\~}22\%$ enhancement of overall Sh value at high blowing ratio of M=1.5.

Temperature distribution of ceramic panels of a V94.2 gas turbine combustor under realistic operation conditions

  • Namayandeh, Mohammad Javad;Mohammadimehr, Mehdi;Mehrabi, Mojtaba
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.117-135
    • /
    • 2019
  • The lifetime of a gas turbine combustor is typically limited by the durability of its liner, the structure that encloses the high-temperature combustion products. The primary objective of the combustor thermal design process is to ensure that the liner temperatures do not exceed a maximum value set by material limits. Liner temperatures exceeding these limits hasten the onset of cracking which increase the frequency of unscheduled engine removals and cause the maintenance and repair costs of the engine to increase. Hot gas temperature prediction can be considered a preliminary step for combustor liner temperature prediction which can make a suitable view of combustion chamber conditions. In this study, the temperature distribution of ceramic panels for a V94.2 gas turbine combustor subjected to realistic operation conditions is presented using three-dimensional finite difference method. A simplified model of alumina ceramic is used to obtain the temperature distribution. The external thermal loads consist of convection and radiation heat transfers are considered that these loads are applied to flat segmented panel on hot side and forced convection cooling on the other side. First the temperatures of hot and cold sides of ceramic are calculated. Then, the thermal boundary conditions of all other ceramic sides are estimated by the field observations. Finally, the temperature distributions of ceramic panels for a V94.2 gas turbine combustor are computed by MATLAB software. The results show that the gas emissivity for diffusion mode is more than premix therefore the radiation heat flux and temperature will be more. The results of this work are validated by ANSYS and ABAQUS softwares. It is showed that there is a good agreement between all results.

Coupled CFD-FE Analysis Method for IC Engine Cooling Water Jacket under Subcooled Nucleate Boiling Conditions (핵비등 열전달 효과를 고려한 내연기관 냉각수로의 CFD-FE 연성해석 기법)

  • Lee, Myung-Hoon;Kim, Dong-Kwang;Lee, Sang-Kyoo;Rhim, Dong-Ryul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.9-16
    • /
    • 2006
  • The present study is to simulate coolant flow in IC engine cooling passages under subcooled nucleate boiling conditions and investigate thermal stress analysis of the solid part. To consider nucleate boiling heat transfer effect, Chen's empirical formula is used through user subroutine programing in CFD code and then nucleate boiling model is compared with Robinson's experimental results, which shows reasonable agreement. This Chen's nucleate boiling model is applied to single cylinder IC engine model and we do cylinder liner thermal stress analysis using commercial FEM code.