Browse > Article
http://dx.doi.org/10.12989/amr.2019.8.2.117

Temperature distribution of ceramic panels of a V94.2 gas turbine combustor under realistic operation conditions  

Namayandeh, Mohammad Javad (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Mehrabi, Mojtaba (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Publication Information
Advances in materials Research / v.8, no.2, 2019 , pp. 117-135 More about this Journal
Abstract
The lifetime of a gas turbine combustor is typically limited by the durability of its liner, the structure that encloses the high-temperature combustion products. The primary objective of the combustor thermal design process is to ensure that the liner temperatures do not exceed a maximum value set by material limits. Liner temperatures exceeding these limits hasten the onset of cracking which increase the frequency of unscheduled engine removals and cause the maintenance and repair costs of the engine to increase. Hot gas temperature prediction can be considered a preliminary step for combustor liner temperature prediction which can make a suitable view of combustion chamber conditions. In this study, the temperature distribution of ceramic panels for a V94.2 gas turbine combustor subjected to realistic operation conditions is presented using three-dimensional finite difference method. A simplified model of alumina ceramic is used to obtain the temperature distribution. The external thermal loads consist of convection and radiation heat transfers are considered that these loads are applied to flat segmented panel on hot side and forced convection cooling on the other side. First the temperatures of hot and cold sides of ceramic are calculated. Then, the thermal boundary conditions of all other ceramic sides are estimated by the field observations. Finally, the temperature distributions of ceramic panels for a V94.2 gas turbine combustor are computed by MATLAB software. The results show that the gas emissivity for diffusion mode is more than premix therefore the radiation heat flux and temperature will be more. The results of this work are validated by ANSYS and ABAQUS softwares. It is showed that there is a good agreement between all results.
Keywords
V94.2 gas turbine combustor; combustion chamber; temperature distribution; realistic operation conditions; 3D-FDM;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 TerMaath, C.Y., Skolnik, E.G., Schefer, R.W. and Keller, J.O. (2006), "Emissions reduction benefits from hydrogen addition to midsize gas turbine feedstocks", Int. J. Hyd. Energy., 31(9), 1147-1158. https://doi.org/10.1016/j.ijhydene.2005.10.002   DOI
2 TUGA (2012), V94.2 Gas Turbine Maintenance and Training.
3 Wan, H., Gao, Z., Ji, J., Fang, J. and Zhang, Y. (2019), "Experimental study on horizontal gas temperature distribution of two propane diffusion flames impinging on an unconfined ceiling", Int. J. Therm. Sci., 136, 1-8. https://doi.org/10.1016/j.ijthermalsci.2018.10.010   DOI
4 Wang, X., Wei, K., Tao, Y., Yang, X., Zhou, H., He, R. and Fang, D. (2019), "Thermal protection system integrating insulation materials and multi-layer ceramic matrix composite cellular sandwich panels", Compos. Struct., 209, 523-534. https://doi.org/10.1016/j.compstruct.2018.11.004   DOI
5 Matarazzo, S. and Laget, H. (2011), "Modeling of heat transfer in a gas turbine liner combustor", Chia Laguna, Cagliari, Sardinia, Italy, 11-15.
6 Mohammadimehr, M. and Mehrabi, M. (2017), "Stability and free vibration analyses of double-bonded micro composite sandwich cylindrical shells conveying fluid flow", Appl. Math. Model., 47, 685-709. https://doi.org/10.1016/j.apm.2017.03.054   DOI
7 Mohammadimehr, M. and Mostafavifar, M. (2016), "Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT", Compos. Part B, 94(1), 253-270. https://doi.org/10.1016/j.compositesb.2016.03.030   DOI
8 Mohammadimehr, M. and Rahmati, A.H. (2013), "Small scale effect on electro-thermo-mechanical vibration analysis of single-walled boron nitride nanorods under electric excitation", Turkish J. Eng. Environ. Sci., 37, 1-15.
9 Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature- dependent material properties under hydro-thermo-mechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055   DOI
10 Mohammadimehr, M., BabaAkbar Zarei, A., Parakandeh, A. and Arani, A.G. (2017), "Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and unsymmetric distributions of nanotubes under multi physical fields", Struct. Eng. Mech., Int. J., 64(3), 361-379. https://doi.org/10.12989/sem.2017.64.3.361
11 Arani, A.G., Amir, S., Mozdianfard, M.R., Khoddami Maraghi, Z. and Mohammadimehr, M. (2012a), "Electro-thermal non-local vibration analysis of embedded DWBNNTs", IMechE, Part C: J. Mech. Eng. Sci., 226(5), 1410-1422. https://doi.org/10.1177/0954406211422619   DOI
12 Yang, Z., Adeosun, A., Kumfer, B.B. and Axelbaum, R.L. (2017), "An approach to estimating flame radiation in combustion chambers containing suspended-particles", Fuel, 199, 420-429. https://doi.org/10.1016/j.fuel.2017.02.083   DOI
13 Yazdani, R., Mohammadimehr, M. and Rousta Navi, B. (2019), "Free vibration of Cooper-Naghdi micro saturated porous sandwich cylindrical shells with reinforced CNT face sheets under magneto-hydro-thermo-mechanical loadings", Struct. Eng. Mech., Int. J., 70(3), 351-365. https://doi.org/10.12989/sem.2019.70.3.351
14 Bergman, T.L., Lavine, A.S., Incropera, F.P. and Dewitt, D.P. (2011), Fundamentals of Heat and Mass Transfer, (7th edition), John Wiley & Sons, Inc., NJ, USA.
15 Mohammadimehr, M., Atifeh, S.J. and Rousta Navi, B. (2018a), "Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings", J. Vib. Control, 24(15), 3471-3486. https://doi.org/10.1177/1077546317706887   DOI
16 Aditya, K., Gruber, A., Xu, Ch., Lu, T., Krisman, A., Bothien, M.R. and Chen, J.H. (2019), "Direct numerical simulation of flame stabilization assisted by autoignition in a reheat gas turbine combust", Proceed. Combus. Inst., 37(2), 2635-2642. https://doi.org/10.1016/j.proci.2018.06.084   DOI
17 Andreini, A., Becchi, R., Facchini, B., Picchi, A. and Peschiulli, A. (2017), "The effect of effusion holes inclination angle on the adiabatic film cooling effectiveness in a three-sector gas turbine combustor rig with a realistic swirling flow", Int. J. Therm. Sci., 121, 75-88. https://doi.org/10.1016/j.ijthermalsci.2017.07.003   DOI
18 Arani, A.G., Hashemian, M., Loghman, A. and Mohammadimehr, M. (2011), "Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Technical Physi., 52(5), 815-824. https://doi.org/10.1134/S0021894411050178   DOI
19 Arani, A.G., Mobarakeh, M.R., Shams, Sh. and Mohammadimehr, M. (2012b), "The effect of CNT volume fraction on the magneto-thermo-electro-mechanical behavior of smart nanocomposite cylinder", J. Mech. Sci. Technol., 26(8), 2565-2572. https://doi.org/10.1007/s12206-012-0639-5   DOI
20 Bejan, A. and Kraus, A.D. (2003), Heat Transfer Handbook, John Wiley & Sons, Inc., New Jersey, USA.
21 Boyce, M.P. (2012), Gas Turbine Engineering Handbook, (4th edition), Butterworth-Heinemann, Elsevier Inc., NY, USA.
22 Bradshaw, S. and Waitz, L. (2006), "Impact of manufacturing variability on combustor liner durability", J. Eng. Gas Turbines Power, 131(3), 032503. https://doi.org/10.1115/1.2980016   DOI
23 Perpignan, A.A.V., Rao, A.G. and Roekaerts, D.J.E.M. (2018), "Flameless combustion and its potential towards gas turbines", Prog. Energy. Combus. Sci., 69, 28-62. https://doi.org/10.1016/j.pecs.2018.06.002   DOI
24 Mohammadimehr, M., Emdadi, M., Afshari, H. and Rousta Navi, B. (2018b), "Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermomagneto-mechanical loadings using DQM", Int. J. Smart Nano Mater., 9(4), 233-260. https://doi.org/10.1080/19475411.2017.1377312   DOI
25 Mukherji, D., Rosler, J. and Wehrs, J. (2012), "Co-Re-based alloys a new class of material for gas turbine applications at very high temperatures", Adv. Mater. Res., Int. J., 1(3), 205-219. https://doi.org/10.12989/amr.2013.1.3.205
26 Najjar, Y.S.H. (2000), "Gas turbine cogeneration systems: a review of some novel cycles", Appl. Therm. Eng., 20, 179-197. https://doi.org/10.1016/S1359-4311(99)00019-8   DOI
27 Poullikkas, A. (2005), "An overview of current and future sustainable gas turbine technologies", Renew. Sustain. Energy. Rev., 9(5), 409-443. https://doi.org/10.1016/j.rser.2004.05.009   DOI
28 Gustafsson, K.M.B. and Johansson, T. (2001), "An experimental study of surface temperature distribution on effusion-cooled plates", J. Eng. Gas. Turb. Power., 123, 308-316. https://doi.org/10.1115/1.1364496   DOI
29 Chau, J.L.H., Pan, A. and Yang, Ch. (2017), "Preparation of gas-atomized Fe-based alloy powders and HVOF sprayed coatings", Adv. Mater. Res., Int. J., 6(4), 343-348. https://doi.org/10.12989/amr.2017.6.4.343
30 Goodger, E.M. (2007), Aerospace Fuels, Landfall Press, Norwich, UK.
31 Hill, P.G. and Peterson, C.R. (1992), Mechanics and Thermodynamics of Propulsion, (2nd edition), Addison- Wesley Inc., Boston, MA, USA.
32 Kim, K.M., Yun, N., Jeon, Y.H., Lee, D.H., Cho, H.H. and Kang, S. (2010a), "Conjugated heat transfer and temperature distributions in a gas turbine combustion liner under base-load operation", J. Mech. Sci. Technol, 24(9), 1939-1946. https://doi.org/10.1007/s12206-010-0625-8   DOI
33 Kim, K.M., Yun, N., Jeon, Y.H., Lee, D.H. and Cho, H.H. (2010b), "Failure analysis in after shell section of gas turbine combustion liner under base-load operation", Eng. Fail. Anal., 17(4), 848-856. https://doi.org/10.1016/j.engfailanal.2009.10.018   DOI
34 Koc, I. (2015), "The use of liquefied petroleum gas (lpg) and natural gas in gas turbine jet engines", Adv. Energy Res., Int. J., 3(1), 31-43. https://doi.org/10.12989/eri.2015.3.1.031   DOI
35 Lefebvre, A.H. (2010), Gas Turbine Combustion, (3rd edition), Taylor and Francis Group, NY, USA.
36 Lienhard, J.H. and Lenhard, V.J.H. (2003), A Heat Transfer Text Book, (3rd edition), Phlogiston Press Cambridge, MA, USA.
37 Martiny M., Schulz, A. and Witting, S. (1995), "Full-Coverage Film Cooling Investigations: Adiabatic Wall Temperatures and Flow Visualization", ASME Conference Proceedings, Houston, TX, USA.
38 Sousa, J., Paniagua, G. and Morata, E.C. (2017), "Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor", Appl. Energy, 195, 247-256. https://doi.org/10.1016/j.apenergy.2017.03.045   DOI
39 Rajaei, Gh., Aftabi, F. and Ehyaei, M.A. (2017), "Feasibility of using biogas in a micro turbine for supplying heating, cooling and electricity for a small rural building", Adv. Energy Res., Int. J., 5(2), 129-145. https://doi.org/10.12989/eri.2017.5.2.129
40 Sanaye, S., Amani, M. and Amani, P. (2018), "4E modeling and multi-criteria optimization of CCHPW gas turbine plant with inlet air cooling and steam injection", Sustain. Energy Technol. Assess., 29, 70-81. https://doi.org/10.1016/j.seta.2018.06.003   DOI
41 Rostami, R., Mohammadimehr, M., Ghannad, M. and Jalali, A. (2018), "Forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by CNTs based on MCST with temperature-variable material properties", Theor. Appl. Mech. Lett., 8, 97-108. https://doi.org/10.1016/j.taml.2018.02.005   DOI
42 Rahmati, A.H. and Mohammadimehr, M. (2014), "Vibration analysis of non-uniform and non-homogeneous boron nitride nanorods embedded in an elastic medium under combined loadings using DQM", Physica B: Condensed Matter, 440, 88-98. https://doi.org/10.1016/j.physb.2014.01.036   DOI
43 Reeves, D. (1956), "Flame radiation in an industrial gas turbine combustion chamber", National Gas Turbine Establishment, NGTE Memo M285, UK.
44 Rist, J.F., Dias, M.F., Palman, M., Zalazo, D. and Cukurel, B. (2017), "Economic dispatch of a single microgas turbine under CHP operation", Appl. Energy, 200, 1-18. https://doi.org/10.1016/j.apenergy.2017.05.064   DOI