• 제목/요약/키워드: Cooling impact

검색결과 278건 처리시간 0.025초

Reactor Vessel Water Level Estimation During Severe Accidents Using Cascaded Fuzzy Neural Networks

  • Kim, Dong Yeong;Yoo, Kwae Hwan;Choi, Geon Pil;Back, Ju Hyun;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.702-710
    • /
    • 2016
  • Global concern and interest in the safety of nuclear power plants have increased considerably since the Fukushima accident. In the event of a severe accident, the reactor vessel water level cannot be measured. The reactor vessel water level has a direct impact on confirming the safety of reactor core cooling. However, in the event of a severe accident, it may be possible to estimate the reactor vessel water level by employing other information. The cascaded fuzzy neural network (CFNN) model can be used to estimate the reactor vessel water level through the process of repeatedly adding fuzzy neural networks. The developed CFNN model was found to be sufficiently accurate for estimating the reactor vessel water level when the sensor performance had deteriorated. Therefore, the developed CFNN model can help provide effective information to operators in the event of a severe accident.

The impact of ram pressure on the multi-phase ISM probed by the TIGRESS simulation

  • Choi, Woorak;Kim, Chang-Goo;Chung, Aeree
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.62.1-62.1
    • /
    • 2018
  • Galaxies in the cluster environment interact with the intracluster medium (ICM), losing the interstellar medium (ISM) and alternating their evolution. Observational evidences of the extraplanar ISM stripped by the ICM's ram pressure are prevalent in HI imaging studies of cluster galaxies. However, current theoretical understanding of the ram pressure stripping (or ICM-ISM interaction in general) is still limited mainly due to the lack of numerical resolution at ISM scales in large-scale simulations. Especially, self-consistent modeling of the turbulent, multiphase ISM is critical to understand star formation in galaxies interacting with the ICM. To achieve this goal, we utilize the TIGRESS simulation suite, simulating a local patch of galactic disks with high resolution to resolve key physical processes in the ISM, including cooling/heating, self-gravity, MHD, star formation, and supernova feedback. We then expose the ISM disk to ICM flows and investigate the evolution of star formation rate and the properties of the ISM. By exploring ICM parameter space, we discuss an implication of the simple ram pressure stripping condition (so called the Gunn-Gott condition) to the realistic ISM.

  • PDF

지표수 열교환기 설계 변수와 적용 효과에 대한 선행 분석 (Preliminary Analysis on Design Parameters and Application Effects of Surface Water Heat Exchanger (SWHE))

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권3호
    • /
    • pp.24-32
    • /
    • 2016
  • Commercial buildings and institutions are generally cooling-dominated and therefore reject more heat to a borehole ground heat exchanger (BHE) than they extract over the annual cycle. Shallow ponds can provide a cost-effective means to balance the thermal loads to the ground and to reduce the length of BHE. This paper presents the analysis results of the impact of design parameters on the length of SWHE pipe and its application effect on geothermal heat pump (GHP) system using BHE. In order to analysis, we applied ${\varepsilon}-NTU$ method on designing the length of SWHE pipe. Analysis results show that the required pipe length of SWHE was decreased with the increase of approach temperature difference and with the decrease of pipe wall thickness. In addition, when the SWHE was applied to the GHP system, the temperature of BHE was more stable than that of standalone BHE system.

Concrete structures under combined mechanical and environmental actions: Modelling of durability and reliability

  • Vorechovska, Dita;Somodikova, Martina;Podrouzek, Jan;Lehky, David;Teply, Bretislav
    • Computers and Concrete
    • /
    • 제20권1호
    • /
    • pp.99-110
    • /
    • 2017
  • Service life assessments which do not include the synergy between mechanical and environmental loading are neglecting a factor that can have a significant impact on structural safety and durability assessment. The degradation of concrete structure is a result of the combined effect of environmental and mechanical factors. In order to make service life design realistic it is necessary to consider both of these factors acting simultaneously. This paper deals with the advanced modelling of concrete carbonation and chloride ingress into concrete using stochastic 1D and 2D models. Widely accepted models incorporated into the new fib Model Code 2010 are extended to include factors that reflect the coupled effects of mechanical and environmental loads on the durability and reliability of reinforced concrete structures. An example of cooling tower degradation by carbonation and an example of a bended reinforced concrete beam kept for several years in salt fog are numerically studied to show the capability of the stochastic approach. The modelled degradation measures are compared with experimental results, leading to good agreement.

디젤엔진에서 배출되는 미세 입자의 크기 분포 (Submicrometer Particle Size Distribution of Emissions from Diesel Engines)

  • 김민철;권순박;이규원;김종춘;류정훈;엄명도
    • 한국대기환경학회지
    • /
    • 제15권5호
    • /
    • pp.657-665
    • /
    • 1999
  • Particulate matter produced by diesel engines is of concern to cngine manufactures because of its environmental impact. The majority of diesel particles are in the range of smaller than 1 ${\mu}{\textrm}{m}$. Because of their tiny volume, ultrafine diesel particles contribute very little to the total mass concentration which is currently regulated for automobile emissions. Ultrafinc particles are known to have deleterious effects upon human health cspecially because they penetrate deeply human respiratory tract and have negative effects on the health. In this study, the engine exhaust gas was diluted in a dilution tunnel and the particle size distribution was measured using the scanning mobility particel sizer system. Measurements of the number and the mass concentrations of the diesel exhaust were made under different engine ooperating conditions. The dilution sampling system provided a common basis for collection of the exhaust by cooling and diluting the source emission prior to the measurement. The measurement results showed that the particle size distributions of the exhaust from the diesel vehicles equipment with either heavy-duty or lignt-duty diesel engines, were similar in the particle size range of 0.08~0.2${\mu}{\textrm}{m}$.

  • PDF

Impact of Air-side Economizer Control Considering Air Quality Index on Variable Air Volume System Performance

  • Cho, Sang-Hyeon;Park, Joon-Young;Jeong, Jae-Weon
    • 국제초고층학회논문집
    • /
    • 제6권1호
    • /
    • pp.101-111
    • /
    • 2017
  • The objective of this study is to determine the effectiveness of a modified air-side economizer in improving indoor air quality (IAQ). An air-side economizer, which uses all outdoor air for cooling, affects the building's IAQ depending on the outside air quality and can significantly affect the occupants' health, leading to respiratory and heart disease. The Air Quality Index (AQI), developed by the US Environmental Protection Agency (US EPA), measures air contaminants that adversely affect human beings: PM10, PM2.5, SO2, NO2, O3, and CO. In this study, AQI is applied as a control for the operation of an air-side economizer. The simulation is analyzed, comparing the results between the differential enthalpy economizer and AQI-modified economizer. The results confirm that an AQI-modified economizer has a positive effect on IAQ. Compared to the operating differential enthalpy economizer, energy increase in an operating AQI-modified economizer is 0.65% in Shanghai and 0.8% in Seoul.

SEVERE ACCIDENT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT AND IMPROVEMENTS SUGGESTED

  • Song, Jin Ho;Kim, Tae Woon
    • Nuclear Engineering and Technology
    • /
    • 제46권2호
    • /
    • pp.207-216
    • /
    • 2014
  • This paper revisits the Fukushima accident to draw lessons in the aspect of nuclear safety considering the fact that the Fukushima accident resulted in core damage for three nuclear power plants simultaneously and that there is a high possibility of a failure of the integrity of reactor vessel and primary containment vessel. A brief review on the accident progression at Fukushima nuclear power plants is discussed to highlight the nature and characteristic of the event. As the severe accident management measures at the Fukushima Daiich nuclear power plants seem to be not fully effective, limitations of current severe accident management strategy are discussed to identify the areas for the potential improvements including core cooling strategy, containment venting, hydrogen control, depressurization of primary system, and proper indication of event progression. The gap between the Fukushima accident event progression and current understanding of severe accident phenomenology including the core damage, reactor vessel failure, containment failure, and hydrogen explosion are discussed. Adequacy of current safety goals are also discussed in view of the socio-economic impact of the Fukushima accident. As a conclusion, it is suggested that an investigation on a coherent integrated safety principle for the severe accident and development of innovative mitigation features is necessary for robust and resilient nuclear power system.

Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

  • Mahanthesh, Basavarajappa;Gireesha, Bijjanal Jayanna;PrasannaKumara, Ballajja Chandra;Shashikumar, Nagavangala Shankarappa
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1660-1668
    • /
    • 2017
  • The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

국부건식(물커튼식)수중용접법에 관한 연구 (A Study on Locally Drying Underwater Welding)

  • 이규복;황선효;박영조;김종열
    • Journal of Welding and Joining
    • /
    • 제10권2호
    • /
    • pp.51-62
    • /
    • 1992
  • A torch was designed and fabricated in order to develope the technology of "locally drying underwater welding" by water curtain method. The condition for the formation of the possible local cavity, the mechanical properties and the thermal cycle of welds were investigated in the developed welding equipment compared with in-air welding. The possibility of highly reliable and practical underwater welding was found. The proper local cavity was formed above the water flowrate of 30l/min and CO$_{2}$ gas flowrate of 100l/min. The bead width and penetration depth were increased with increasing welding current. The hardness of weldments is about 160Hv in air welding, but about 210Hv in underwater welding. The elongation and the impact value of underwater weldments are 15% and 6Kg/cm$^{2}$ respectively, which are only half as much as the values of in-air welding. The cooling time in the temperature range from 800.deg.C to 500.deg.C affecting the structure and the hardness of weldments is about 22sec. in air welding while about 10sec. in underwater welding.r welding.

  • PDF

도심 실제 거칠기 적용과 장래 도심 개발계획에 따른 국지 기상장 변화 수치 모의 (The Effect of Atmospheric Flow Field According to the Urban Roughness Parameter and the Future Development Plan on Urban Area)

  • 최현정;이화운;김민정
    • 한국환경과학회지
    • /
    • 제19권6호
    • /
    • pp.703-714
    • /
    • 2010
  • In this study, we analyzed the impact of orographic and thermal forcing on the atmospheric flow field over the urban metropolitan areas on urban artificial buildings and future development plan. Several numerical experiments have been undertaken in order to clarify the impacts of the future development plan on urban area by analyzing practical urban ground conditions, we revealed that there were large differences in the meteorological differences in each case. The prognostic meteorological fields over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model(MM5). we carried out a comparative examination on the meteorological fields of topography and land-use that had building information and future development plan. A higher wind speed at daytimes tends to be forecasted when using new topography and land use data that have a high resolution with an appropriate limitation to the mixing height and the nocturnal boundary layer(NCB). During nighttime periods, since radiation cooling development is stronger after development plan, the decreased wind speed is often generated.