• 제목/요약/키워드: Cooling fans

Search Result 103, Processing Time 0.025 seconds

Design of Cooling System for Variable Speed 300kW PMSM (300kW 급 가변속 PMSM의 냉각시스템 설게)

  • Zhou, Guang-xu;Lee, Dong-Hee;Ahn, Jin-Woo;An, Young-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.923-924
    • /
    • 2007
  • due to the modification of ventilation system for variable speed high efficiency PMSM, the ventilation structure is analyzed in this part. First, a cooling structure was proposed for the variable speed PMSM. Through the contrast result of whole stress and speed distribution in the cooling channel by fluid field, the fans setting fashion is confirmed. By the studying of cooling structure for improved PMSM, the position of the cooling hole in the rotor is optimized by the finite element method. At last, the thermal field distribution of the motor is calculated by FEM. The calculated thermal rise is in accord with measured value, which provides effective basement for the design and safety operation of PMSM.

  • PDF

An Experimental Analysis of the Structure-Borne Noise Reduction on Electrical Equipment (전자장비 구조기인소음 저감방안의 실험적 검토)

  • Lee, Seong-Hyun;Seo, Yun-Ho;Kim, Won-Hyoung;Choi, Young-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.111-117
    • /
    • 2014
  • In this paper, the structure-borne noise reduction on electrical equipment is discussed by the experimental analysis. The water cooling system in electrical equipment is the only noise source, so the mock-up was made to measure noise characteristics. Effects of power supply, stiffness, isolation of noise source and natural frequency determined by resilient mounts are investigated using the mock-up. The console prototype was made referring to noise reduction technique by the mock-up. The structure-borne noise level of a console prototype was measured and some experiments to reduce the noise was undertaken. The $1^{st}$ and $4^{th}$ harmonics of operating frequency of cooling fans causes highest structure-borne noise levels. The control of operating speeds of several DC cooling fan groups was tried. Also types and installation layouts of resilient mounts were investigated. To reduce structure-borne noise, followings can be applied: increase of stiffness, isolation of source, decrease of natural frequency of mount, combination of operating speed of fans, selection of mounts, and so on.

A Study on Numerical Analysis for Internal PEMFC Cooling of Power Pack for UPS (UPS 파워 팩 내부 연료전지의 냉각특성에 대한 수치 해석)

  • Song, Jun-Seok;Kim, Byeong-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.527-535
    • /
    • 2017
  • Heat management is one of the most critical issues in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) installed inside the fuel cell power pack of a fuel cell battery hybrid UPS. If the heat generated by the chemical reaction in the fuel cell is not rapidly removed, the durability and performance of the fuel cell may be affected, which may shorten its lifetime. Therefore, the objective of this study is to select and propose a proper cooling method for the fuel cells used in the fuel cell power pack of a UPS. In order to find the most appropriate cooling method, the various design factors affecting the cooling performance were studied. The numerical analysis was performed by a commercial program, i.e., COMSOL Multiphysics. Firstly, the surface temperature of the 1 kW class fuel cell stack with the cooling fans placed at the top was compared with the one with the cooling fans placed at the bottom. Various rotation speeds of the cooling fan, viz. 2,500, 3,000, 3,500, and 4,000 RPM, were tested to determine the proper cooling fan speed. In addition, the influence of the inhaled air flow rate was investigated by changing the porous area of the grille, which is the entrance of the air flowing from the outside to the inside of the power pack. As a result, it was found that for the operating conditions of the 1 kW class PEMFC to be acceptable, the cooling fan was required to have a minimum rotating speed of 3500 RPM to maintain the fuel cell surface temperature within an acceptable range. The results of this study can be effectively applied to the development of thermal management technology for the fuel cells inside the fuel cell power pack of a UPS.

PIV Measurement of Inlet and Outlet Flow of Contra-Rotating Small-Sized Cooling Fan

  • Shigemitsu, Toru;Fukuda, Hiroaki;Fukutomi, Junichiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.175-181
    • /
    • 2016
  • Contra-rotating rotors have been adopted for some of the cooling fans to meet the demand for the high pressure and large flow rate. Therefore, it is important to clarify its inlet and outlet flows by experiments for the high performance and stable operation. PIV measurements were conducted at the design and partial flow rates. In the present paper, the inlet and outlet flow conditions of the contra-rotating small-sized cooling fan with a 40mm square casing are studied by using PIV measurement. Furthermore, improvements of the flow condition and design guideline to increase the performance were discussed based on the experimental results.

Surface Profile Measuring System for Axial Fan of Cooling Towers (냉각탑용 축류팬 형상 정밀도 측정 시스템)

  • Kang Jae-Gwan;Lee Kwang-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.151-158
    • /
    • 2005
  • An important component of a cooling tower is an axial fan, and there happens distortion in its shape which brings significant loss of efficiency. In this paper, a surface profile measuring system for large size axial fan of cooling towers is developed. A laser sensor is used as a measuring device and aluminum profiles and stepping motors are engaged into the system as frame structure and driving devices respectively. The measuring data are compared to the design data to compute the distortion of the axial fans. Two types of errors, axial and twist errors, are used to represent the precision of axial fan distortion. Genetic algorithm is used to solve the optimization problem during computing the precision. Results are displayed three dimensionally in a solid-modeler as well as 2-D drawings to help users find it with ease.

A Numerical Analysis in Piezoelectric Fan Systems (압전세라믹 냉각팬에 대한 수치해석적 연구)

  • Park, Ji-Ho;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.994-1000
    • /
    • 2011
  • In this study, the piezoelectric fan cooling system is investigated. In order to find the proper geometry and configuration, the numerical model for the flow field and heat transfer investigation is used. A simplified nonlinear deformation model is employed for transient solutions of a piezoelectric fan with the dynamic mesh and user defined function capability. The results show that the cooling is most effective when the length of a piezoelectric fan is 5 cm and the cooling plate is 3 cm. The results can be used to develop a new design method of heat sink for piezoelectric fans.

Aerodynamic Noise Prediction of Automobile Engine Cooling Fan Noise (자동차 엔진 냉각홴의 공력 소음 예측에 관한 연구)

  • Lee, Jeonghan;Cho, Kyungseok;Sun, Hyosung;Shin, Hyungki;Lee, Soogab
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.115-120
    • /
    • 1998
  • Aerodynamic noise generated by automobile cooling fan is investigated. Automobile cooling fans radiate both discrete frequency noise as well as broadband noise. In the present work, the former is considered through free-wake panel method coupled with acoustic analogy fully considering the retarded time variation on the blade surface, while the latter is taken into account by three well-established broadband noise components. Experiments were performed to supplement necessary inputs as well as to provide the final comparison with the predicted noise spectrum. The predicted noise levels at blade passing frequencies agree well with the experimental data for the first few harmonics. Although the predicted broadband noise levels at higher frequencies fall below the experimental data due to the fundamental shortcomings of the utilized formulations, the analysis offers a detailed physical understanding of the fan noise generation processes.

  • PDF

A Numerical Analysis for Prediction of Flow Rate of the Motor Cooling Fan (전동기 냉각팬의 유량예측을 위한 수치해석)

  • Lee, Sang-Hwan;Kang, Tae-In;Ahn, Chel-O;Seo, In-Soo;Lee, Chang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.670-677
    • /
    • 2005
  • In this study, we analyzed the three dimensional unsteady flow field around the motor cooling fan using the unsteady lifting surface theory. We obtained the flow rate for various geometries of fan from the calculated results of velocity field. For the data of design parameter and rotating speed(rpm) of the fan, we can predict the flow rate of the motor cooling fan with thin thickness through numerical analysis without the experimental data of the free stream velocity which is a boundary condition of flow field. the numerical results showed the flow rate within 10% of error in comparison with experimental results. The radial fans, which are often used as internal motor fan were also investigated with the same procedure.

  • PDF

Effects of Thermoelectric Module Arrangement on the Performance of a Thermoelectric Air-Cooling System (열전모듈 냉방기에서 열전모듈의 개수 및 전원배열이 시스템의 성능에 미치는 영향)

  • Hwang, Jun;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.162-168
    • /
    • 2007
  • This paper presents the effects of thermoelectric module arrangement on the cooling performance of an air conditioner using thermoelectric module. A prototype of air cooling system, employing several thermoelectric modules, has been designed and built. The evaporative cooling technique is adopted for hot side of the module. The number of thermoelectric module in the system has been varied in the range of $2{\sim}8$. The optimal operation conditions, such as input power to the thermoelectric module, fans and pump, have been determined for each arrangement of the system and the cooling performance has been compared under the optimal operation. It is found that both cooling capacity and COP are increased as the number of thermoelectric module increased. It is also found that cooling capacity can be improved by connecting the thermoelectric modules in series than in parallel, while the COP is little affected.

Performance Analysis of a Hybrid Desiccant Cooling System for Residential Air Conditioning in the Seoul Region under the Climate Scenarios SSP5 and SSP1 (기후 시나리오 SSP5와 SSP1에서의 2100년 서울 지역에서의 여름철 주택 냉방을 위한 하이브리드 제습 냉방 시스템 성능 분석)

  • YULHO LEE;SUNGJIN PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.773-784
    • /
    • 2023
  • In this study, a comparative analysis between an electric heat pump cooling system and a hybrid desiccant cooling system is conducted. Desiccant cooling is a thermal driven system with potentially lower electric power consumption than electric heat pump. Hybrid desiccant cooling system simulation includes components such as a desiccant rotor, direct and indirect evaporative coolers, heat exchangers, fans, and a heat pump system. Using dynamic simulations by climate conditions, house cooling temperatures and power consumption for both systems are analyzed for 16 days period in the summer season under climate scenarios for the year 2100 prediction. The results reveal that the hybrid desiccant cooling system exhibits a 5-18% reduction in electric consumption compared to the heat pump system.