• Title/Summary/Keyword: Cooling Fin

Search Result 186, Processing Time 0.025 seconds

Analysis of the Cooling Fin for the Temperature Reduction of the Tire Sidewall (타이어 사이드월 온도 저감을 위한 Cooling Fin 해석)

  • Park, JaeHyen;Jung, SungPil;Chang, WonSun;Chun, ChulKyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.862-867
    • /
    • 2014
  • When the vehicle is traveling, the deformation caused by friction continued with the ground is made to occur because the tire is the composite material of a viscoelastic. Part of the deformation energy is converted into heat energy as Hysteresis and temperature inside the tire rises. The generated heat is shed to the outside through the convection and evangelism. Increase in the internal temperature of the tire is difficult to ensure the safety of vehicle by damage to the tire during driving. Recently, Even when the tire is damaged, it is designed to be possible to driving in case of run-flat tires but the fact is that the development of the technology for the synergistic effect of heat release inside the tire by the side reinforcement is necessary. In this study, by using the Finite Element Method (FEM), applying the cooling fins to the tire sidewall, it is intended to check the temperature distribution along the shape of the cooling fins and the temperature reduction effect.

  • PDF

Numerical Investigation on the Thermal Performance of a Cooling Device for a CPV Module (고집광 태양광 모듈용 냉각 장치의 열성능에 대한 수치 해석적 연구)

  • Do, Kyu Hyung;Kim, Taehoon;Han, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In the present study, the effects of the heat spreader thickness and the heat sink size on the thermal performance of a cooling device for a concentrating photovoltaic (CPV) module were numerically investigated. Numerical simulation was conducted by using the simulation tool ICEPAK, commercial software based on the finite volume method. Numerical results were validated by comparing the existing experimental data. The thermal performance of a cooling device, which consisted of a heat spreader and a natural convective heat sink, was evaluated with varying the heat spreader thickness and the heat sink size. The geometric configuration of the natural convective heat sink, such as the fin height, the fin spacing, and the fin thickness, was optimized by using the existing correlation. The numerical results showed that the thermal performance of the cooling device increased as the heat spreader thickness or the heat sink size increased. Also, it was found that the spreading thermal resistance plays an important role in the thermal performance of the cooling device which has the localized heat source.

Heat Transfer from a Fan-Aluminum Foam Heat Sink Assembly for CPU Cooling (CPU 냉각을 위한 홴-발포알루미늄 방열기 조합의 열전달 특성)

  • Kim, Seo-Yeong;Lee, Myeong-Ho;Baek, Jin-Uk;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.417-422
    • /
    • 2002
  • The experiments have been carried out to evaluate the cooling performance of a fan-aluminum foam heat sink assembly in comparison with a conventional CPU cooler. In terms of the dimensionless surface temperature of the heater, the cooling performance of the aluminum foam heat sink is similar to that of the conventional one with much reduced weight. The optimum fin height is found to be strongly dependent on the fin height of the heat sink and flow characteristics of the cooling fan.

An Experimental Study on the Supplemental Cooling and Heating Performance Using 1 kW Thermoelectric Module for Vehicle (열전모듈을 이용한 자동차용 1 kW급 보조 냉난방 시스템의 성능에 관한 실험적 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.224-230
    • /
    • 2014
  • The purpose of this paper is to investigate the performance of supplemental cooling and heating system equipped with the 1 kW thermoelectric module. The system consist of 96 thermoelectric modules, heat sink with louver fin and water cooling jacket which is attached on the hot side of the thermoelectric module. The cooling and heating performance test of the thermoelectric system is conducted with various conditions, such as intake voltage, air inlet temperature, air flow volume, water inlet temperature and water flow rate at calorimeter chamber in consideration of environmental conditions in realistic vehicle drive. The experimental results of a thermoelectric system shows that the cooling capacity and COP is 1.03 kW, and 1.0, and heating capacity and COP is 1.53 kW, and 1.5 respectively.

Slim Air-Conditioner with Parallel Flow Heat Exchangers for Cooling of Telecommunication Cabinet (평행류 열교환기가 적용된 무선통신 중계기 냉각용 슬림형 공조기)

  • Cho, J.P.;Kim, N.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2009
  • Slim telecommunication cabinet cooler, equipped with parallel flow heat exchangers and operating with R-22, is developed. The performance is compared with imported one, equipped with fin-tube heat exchangers and operating with R-134a. Test results show that the newly-developed cooler increases the cooling capacity by 6% and EER by 33%. The refrigerant charge for the developed cooler is 500g compared with 1250g for the imported one. The adoption of parallel flow heat exchanger appears to have reduced the refrigerant charge. In addition, it is shown that the reduced air flow rates through parallel heat exchangers as compared with those through fin-tube heat exchangers are beneficial to the reduction of the equipment noise.

Design of Heat Pump for Temperature Control of Sealed Electric Box (밀폐 형 전장 박스 온도 제어를 위한 히트 펌프 설계)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.110-114
    • /
    • 2020
  • In this paper, a heat pump using a Peltier device was developed for heat dissipation in a sealed electric box. The heat pump was designed with a cooling fin attached to both sides of the Peltier device, and a fan was mounted on the cooling fin on the hot side to increase the efficiency. The heat dissipation efficiency could be improved by directly connecting the electronic component having high heat to the cooling fin using a heat conducting wire. The fabricated heat pump was designed to operate only in the temperature range set by the temperature control system to improve the problem of high power consumption of the Peltier element.

A Review of Fin-and-Tube Heat Exchangers in Air-Conditioning Applications

  • Hu, Robert;Wan, Chi-Chuan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.85-100
    • /
    • 2007
  • This study presents a short overview of the researches in connection to the fin-and-tube heat exchangers with and without the influence of dehumidification. Contents of this review article include the data reduction method, performance data, updated correlations, and the influence of hydrophilic coating for various enhanced fin patterns. This study emphasizes on the experimental researches. Performance of both sensible cooling and dehumidifying conditions are reported in this review article.

A STUDY ON HEAT TRANSFER THROUGH THE FIN-WICK STRUCTURE MOUNTED IN THE EVAPORATOR FOR A PLATE LOOP HEAT PIPE SYSTEM

  • Nguyen, Xuan Hung;Sung, Byung-Ho;Choi, Jee-Hoon;Yoo, Jung-Hyung;Seo, Min-Whan;Kim, Chul-Ju
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2137-2143
    • /
    • 2008
  • This paper investigates the plate loop heat pipe system with an evaporator mounted with fin-wick structure to dissipate effectively the heat generated by the electronic components. The heat transfer formulation is modeled and predicted through thermal resistance analysis of the fin-wick structure in the evaporator. The experimental approach measures the thermal resistances and the operating characteristics. These results gathered in this investigation have been used to the objective of the information to improve the LHP system design so as to apply as the future cooling devices of the electronic components.

  • PDF

Theoretical Study on Heat Exchanger Performance of a Fin-tube Evaporator with Frost Growth in a $CO_2$ Refrigerator Truck (이산화탄소 냉매를 이용한 냉동탑차용 핀-관 증발기의 서리성장에 따른 열교환기 성능에 관한 해석적 연구)

  • Myung, Chi-Wook;Cho, Hong-Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.48-54
    • /
    • 2012
  • To analyze the cooling performance of fin-tube evaporator in the refrigerator truck using R744 according to frost growth, the analytical model of evaporator was developed under frost and non-frost conditions. The performance of fin-tube evaporator was investigated with frost thickness and indoor temperature. Besides, the performance of evaporator under frost condition was compared to that under non-frost condition. As a result, area of air passage and system performance were decreased as the frost thickness increased. The cooling capacity was reduced by 10%, 20%, 30% when the frost thickness was 0.7 mm, 1.1 mm, and 1.6 mm respectively. At these conditions, the block ratio was 31%, 48%, and 71%. In addition, the outlet quality of refrigerant was not over 1 when the frost thickness was 1.6 mm in spite of high indoor air temperature.

An Experimental Study on Cooling Characteristic according to Fin Array of Aluminum Heat Sink (히트싱크의 핀 배열에 따른 냉각특성에 관한 실험적 연구)

  • Yoon, Sung-Un;Kim, Jae-Yeol;Gao, Jia-Chen
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.138-143
    • /
    • 2018
  • In general, the operating temperature of electronic equipment is closely related to product life and reliability, and it is recognized that effectively cooling the parts is an important problem. In this paper, an experimental study on the cooling characteristic according to the pin array of the heat sink is conducted. The experiment on the heat sink was based on the natural convection and temperature distribution changes. The experimental results indicate that the pin array of the heat sink has an effect on the thermoelectric module's cooling characteristic.