단층은 근원암에서 형성된 석유 가스 등의 탄화수소가 이동하는 통로이자 탄화수소를 가두는 덮개암의 역할을 할 수 있는 지질구조로, 탄화수소가 축적된 저류층을 찾기 위한 탄성파 탐사의 주요 대상 중 하나이다. 하지만 기존의 유사성, 응집성, 분산, 기울기, 단층가능성 등 탄성파 자료의 측면 방향 불연속성을 활용하는 단층 감지 방법들은 전문지식을 갖춘 해석자가 많은 계산 비용과 시간을 투자해야 한다는 문제가 있다. 따라서 많은 연구자들이 단층 해석에 필요한 계산 비용과 시간을 절약하기 위한 다양한 연구를 진행하고 있고, 최근에는 머신러닝 기술을 활용한 연구들이 활발히 수행되고 있다. 단층 해석에는 다양한 머신러닝 기술들 중 서포트백터머신, 다층퍼셉트론, 심층 신경망, 합성곱 신경망 등의 알고리즘이 사용되고 있다. 특히 합성곱 신경망을 활용한 연구는 독자적인 구조의 모델을 사용한 연구뿐만 아니라, 이미지 처리 분야에서 성능이 검증된 모델을 활용한 연구 및 단층의 위치와 주향, 경사 등의 정보를 함께 해석하는 연구도 활발히 진행되고 있다. 이 논문에서는 이러한 연구들을 조사하고 분석하여, 현재까지 단층 위치 및 단층 정보 해석에 가장 효과적인 기술은 영상 처리 분야에서 검증된 U-Net 구조를 바탕으로 한 합성곱 신경망인 것을 확인했다. 이러한 합성곱 신경망에 전이학습 및 데이터 증식 기법을 접목하면 앞으로 더욱 효과적인 단층 감지 및 정보 해석이 가능할 것으로 기대된다.
웹 추천기법에서 가장 많이 사용하는 방식 중의 하나는 협업필터링 기법이다. 협업필터링 관련 많은 연구에서 정확도를 개선하기 위한 방안이 제시되어 왔다. 본 연구는 Word2Vec과 앙상블 합성곱 신경망을 활용한 영화추천 방안에 대해 제안한다. 먼저 사용자, 영화, 평점 정보에서 사용자 문장과 영화 문장을 구성한다. 사용자 문장과 영화 문장을 Word2Vec에 입력으로 넣어 사용자 벡터와 영화 벡터를 구한다. 사용자 벡터는 사용자 합성곱 모델에 입력하고, 영화 벡터는 영화 합성곱 모델에 입력한다. 사용자 합성곱 모델과 영화 합성곱 모델은 완전연결 신경망 모델로 연결된다. 최종적으로 완전연결 신경망의 출력 계층은 사용자 영화 평점의 예측값을 출력한다. 실험결과 전통적인 협업필터링 기법과 유사 연구에서 제안한 Word2Vec과 심층 신경망을 사용한 기법에 비해 본 연구의 제안기법이 정확도를 개선함을 알 수 있었다.
International journal of advanced smart convergence
/
제9권2호
/
pp.173-178
/
2020
A common problem with neural network learning is that it is too suitable for the specificity of learning. In this paper, various methods were compared to avoid overfitting: regularization, drop-out, different numbers of data and different types of neural networks. Comparative studies of the above-mentioned methods have been provided to evaluate the test accuracy. I found that the more data using method is better than the regularization and dropout methods. Moreover, we know that deep convolutional neural networks outperform multi-layer neural networks and simple convolution neural networks.
운전자의 안전사고에 직접적인 원인이 되고, 차량 파손을 유발시켜 재산상의 피해를 발생시키고 있는 포트홀을 완전 합성곱 신경망 기반의 자동으로 탐지하는 기법을 본 논문에서는 제안한다. 먼저, 실제 국내 도로를 주행하면서 차량에 설치된 카메라를 통하여 학습 데이터셋을 수집하고, 완전 합성곱 신경망 구조를 활용하여 의미론적 분할 형태로 신경망을 학습하였다. 어두운 환경에서 강건한 성능을 보이기 위하여 학습 데이터셋을 밝기에 따라서 증강하여 총 30,000장의 이미지를 학습하였다. 또한, 제안된 자동 포트홀 탐지 기술의 성능을 검증하기 위하여 총 450장의 평가 DB를 생성하였고, 총 네 명의 전문가가 각각의 이미지를 평가하였다. 평가 결과, 제안된 포트홀 탐지 기술은 높은 민감도 수치를 나타나는 것으로 평가 되었으며, 이는 정탐에서 강건한 성능을 보이는 것으로 해석 가능하다.
본 논문은 딥러닝기법 중 하나인 합성곱 신경망과 순환 신경망 중 하나인 장단기 메모리를 이용하여 사격시 발생하는 소음(이하 사격음)만으로 화기의 종류, 사격음 발생지점에 관한 정보(거리와 방향)을 추정하는 모델을 다루었다. 이를 위해 미국 법무부 산하 연구소의 지원하에 생성된 Gunshot Audio Forensic Dataset을 이용하였으며, 음향신호를 멜 스펙트로그램(Mel-Spectrogram)으로 변환한 후, 4종의 합성곱 신경망과 1종의 장단기 메모리 레이어로 구성된 딥러닝 모델에 학습 및 검증 데이터로 제공하였다. 제안 모델의 성능을 확인하기 위해 합성곱 신경망으로만 구성된 대조 모델과 비교·분석하였으며, 제안 모델의 정확도가 90 % 이상으로 대조모델보다 우수한 성능을 보였다.
본 논문에서는 뇌파 신호를 이용하여 환자의 경련을 감지하는 순환 CNN (Convolutional Neural Networks)을 제안한다. 제안 된 방법은 뇌파 신호의 스펙트럼 특성과 전극의 위치를 보존하기 위해 영상으로 데이터를 매핑하여 처리하였다. 스펙트럼 전처리 과정을 거친 후 CNN에 입력하고 공간 및 시간 특성을 웨이블릿 변환(wavelet transform)없이 추출하여 발작을 검출하였다. 여기에 사용된 보스턴 매사추세츠 공과 대학 (Boston Massachusetts Institute of Technology, CHB-MIT) 아동 병원의 데이터셋 결과는 시간당 0.85의 민감도와 90 %의 위양성 비율 (FPR)을 보였다.
In order to improve the performance of image classifications using Convolutional Neural Networks (CNN), applying a category hierarchy to the classification can be a useful idea. However, the visual separation of object categories is very different according to the upper and lower category levels and highly uneven in image classifications. Therefore, it is doubtable whether the use of category hierarchies for classification is effective in CNN. In this paper, we have clarified whether the image classification using category hierarchies improves classification performance, and found at which level of hierarchy classification is more effective. For experiments we divided the image classification task according to the upper and lower category levels and assigned image data to each CNN model. We identified and compared the results of three classification models and analyzed them. Through the experiments, we could confirm that classification effectiveness was not improved by reduction of number of categories in a classification model. And we found that only with the re-training method in the last network layer, the performance of lower category classification was not improved although that of higher category classification was improved.
본 연구에서는 Convolutional Neural Networks(CNNs) 기법을 이용하여 차량 번호판을 인식하는 방법을 제시하였다. 차량 번호판은 일반적으로 차량의 공식 식별 목적으로 사용됩니다. 대부분의 일반적인 광학 문자 인식(OCR) 기술은 문서에 인쇄된 문자를 인식하는 데는 효과적이지만 번호판의 등록 번호는 식별할 수 없다. 그리고 번호판 감지에 대한 기존 접근 방식에서는 차량이 움직이지 않고 정지해 있어야 한다. 번호판 감지에 대한 이러한 문제를 해결하기 위해 CNN 기법을 활용한 번호판 인식 기법을 제안한다. 먼저 획득된 차량 번호판 이미지의 데이터베이스를 생성하고 CNN 기법을 활용하여 자동차 번호판 문자를 인식한다. 본 연구의 결과는 주차관리 시스템과 단속 카메라 등에 유용하게 활용 될 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권6호
/
pp.2826-2840
/
2018
Traditional methods based active contours or region merging are powerless in processing images with blurring border or hair occlusion. In this paper, a structure based convolutional neural networks is proposed to solve segmentation of skin lesion image. The structure mainly consists of two networks which are segmentation net and discrimination net. The segmentation net is designed based U-net that used to generate the mask of lesion, while the discrimination net is designed with only convolutional layers that used to determine whether input image is from ground truth labels or generated images. Images were obtained from "Skin Lesion Analysis Toward Melanoma Detection" challenge which was hosted by ISBI 2016 conference. We achieved segmentation average accuracy of 0.97, dice coefficient of 0.94 and Jaccard index of 0.89 which outperform the other existed state-of-the-art segmentation networks, including winner of ISBI 2016 challenge for skin melanoma segmentation.
Radionuclide identification is an important part of the nuclear material identification system. The development of artificial intelligence and machine learning has made nuclide identification rapid and automatic. However, many methods directly use existing deep learning models to analyze the gamma-ray spectrum, which lacks interpretability for researchers. This study proposes an explainable radionuclide identification algorithm based on the convolutional neural network and class activation mapping. This method shows the area of interest of the neural network on the gamma-ray spectrum by generating a class activation map. We analyzed the class activation map of the gamma-ray spectrum of different types, different gross counts, and different signal-to-noise ratios. The results show that the convolutional neural network attempted to learn the relationship between the input gamma-ray spectrum and the nuclide type, and could identify the nuclide based on the photoelectric peak and Compton edge. Furthermore, the results explain why the neural network could identify gamma-ray spectra with low counts and low signal-to-noise ratios. Thus, the findings improve researchers' confidence in the ability of neural networks to identify nuclides and promote the application of artificial intelligence methods in the field of nuclide identification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.