DOI QR코드

DOI QR Code

Development and Evaluation of Automatic Pothole Detection Using Fully Convolutional Neural Networks

완전 합성곱 신경망을 활용한 자동 포트홀 탐지 기술의 개발 및 평가

  • Chun, Chanjun (Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Shim, Seungbo (Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Kang, Sungmo (Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Ryu, Seung-Ki (Korea Institute of Civil Engineering and Building Technology (KICT))
  • Received : 2018.10.02
  • Accepted : 2018.10.17
  • Published : 2018.10.31

Abstract

In this paper, we propose fully convolutional neural networks based automatic detection of a pothole that directly causes driver's safety accidents and the vehicle damage. First, the training DB is collected through the camera installed in the vehicle while driving on the road, and the model is trained in the form of a semantic segmentation using the fully convolutional neural networks. In order to generate robust performance in a dark environment, we augmented the training DB according to brightness, and finally generated a total of 30,000 training images. In addition, a total of 450 evaluation DB was created to verify the performance of the proposed automatic pothole detection, and a total of four experts evaluated each image. As a result, the proposed pothole detection showed robust performance for missing.

운전자의 안전사고에 직접적인 원인이 되고, 차량 파손을 유발시켜 재산상의 피해를 발생시키고 있는 포트홀을 완전 합성곱 신경망 기반의 자동으로 탐지하는 기법을 본 논문에서는 제안한다. 먼저, 실제 국내 도로를 주행하면서 차량에 설치된 카메라를 통하여 학습 데이터셋을 수집하고, 완전 합성곱 신경망 구조를 활용하여 의미론적 분할 형태로 신경망을 학습하였다. 어두운 환경에서 강건한 성능을 보이기 위하여 학습 데이터셋을 밝기에 따라서 증강하여 총 30,000장의 이미지를 학습하였다. 또한, 제안된 자동 포트홀 탐지 기술의 성능을 검증하기 위하여 총 450장의 평가 DB를 생성하였고, 총 네 명의 전문가가 각각의 이미지를 평가하였다. 평가 결과, 제안된 포트홀 탐지 기술은 높은 민감도 수치를 나타나는 것으로 평가 되었으며, 이는 정탐에서 강건한 성능을 보이는 것으로 해석 가능하다.

Keywords

References

  1. Badrinarayanan V., Kendall A. and Cipolla R. (2017), "SegNet: A deep convolutional encoder-decoder architecture for image segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp.2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
  2. Eigen D., Puhrsch C. and Fergus R. (2014), "Depth map prediction from a single image using a multi-scale deep network," in Proc. the 27th International Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, pp.2366-2374.
  3. Goodfellow I., Bengio Y. and Courville A. (2016), Deep Learning, MIT Press, Cambridge, MA.
  4. Goutte C. and Gaussier E. (2005), "A probabilistic interpretation of precision, recall and F-score, with implication for evaluation," in Proc. the 27th European Conference on Advances in Information Retrieval Research (ECIR), Santiago de Compostela, Spain, pp.345-359.
  5. Han W., Wu C., Zhang X., Sun M. and Min G. (2016), "Speech enhancement based on improved deep neural networks with MMSE pretreatment features," in Proc. the IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China.
  6. Ioffe S. and Szegedy C. (2015), "Batch normalization: accelerating deep network training by reducing internal covariate shift," in Proc. the 32nd International Conference on Machine Learning (ICML), Lille, France, pp.448-456.
  7. Jo Y. and Ryu S.-K. (2015), "Pothole detection system using a black-box camera," Sensors, vol. 15, no. 11, pp.29316-29331. https://doi.org/10.3390/s151129316
  8. Kim T. and Ryu S.-K. (2014), "Review and analysis of pothole detection methods," Journal of Emerging Trends in Computing and Information Sciences, vol. 5, no. 8, pp.603-608.
  9. Kingma D. P. and Ba J. L. (2015), "ADAM: a method for stochastic optimization," in Proc. 3rd International Conference on Learning Representations (ICLR), San Diego, CA, pp.1-15.
  10. Krizhevsky A., Sutskever I. and Hinton G. E. (2012), "Imagenet classification with deep convolutional neural networks," in Proc. the 27th International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, NV, pp.1097-1105.
  11. Long J., Shelhamer E. and Darrell T. (2015), "Fully convolutional networks for semantic segmentation," in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp.3431-3440.
  12. Mednis A., Strazdins G., Zviedris R., Kanonirs G. and Selavo L. (2011), "Real time pothole detection using Android smartphones with accelerometers," in Proc. IEEE International Conference on Distributed Computing in Sensor Systems and Workshops, Barcelona, Spain.
  13. Nair V. and Hinton G. E. (2010), "Rectified linear units improve restricted boltzmann machines," in Proc. the 27th International Conference on Machine Learning (ICML), Haifa, Israel, pp.807-814.
  14. Ren S., He K., Girshick R. and Sun J. (2015), "Faster R-CNN: towards real-time object detection with region proposal networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp.1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
  15. Yamada T., Ito T. and Ohya A. (2013), "Detection of road surface damage using mobile robot equipped with 2D laser scanner," in Proc. the 2013 IEEE/SICE International Symposium on System Integration, Kobe, Japan, pp.250-256.

Cited by

  1. 수도 레이블을 활용한 준지도 학습 기반의 도로노면 파손 탐지 vol.18, pp.4, 2018, https://doi.org/10.12815/kits.2019.18.4.71