• Title/Summary/Keyword: Convex Order

Search Result 280, Processing Time 0.033 seconds

A meshfree adaptive procedure for shells in the sheet metal forming applications

  • Guo, Yong;Wu, C.T.;Park, C.K.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • In this paper, a meshfree shell adaptive procedure is developed for the applications in the sheet metal forming simulation. The meshfree shell formulation is based on the first-order shear deformable shell theory and utilizes the degenerated continuum and updated Lagrangian approach for the nonlinear analysis. For the sheet metal forming simulation, an h-type adaptivity based on the meshfree background cells is considered and a geometric error indicator is adopted. The enriched nodes in adaptivity are added to the centroids of the adaptive cells and their shape functions are computed using a first-order generalized meshfree (GMF) convex approximation. The GMF convex approximation provides a smooth and non-negative shape function that vanishes at the boundary, thus the enriched nodes have no influence outside the adapted cells and only the shape functions within the adaptive cells need to be re-computed. Based on this concept, a multi-level refinement procedure is developed which does not require the constraint equations to enforce the compatibility. With this approach the adaptive solution maintains the order of meshfree approximation with least computational cost. Two numerical examples are presented to demonstrate the performance of the proposed method in the adaptive shell analysis.

Development of an efficient algorithm for the minimum distance calculation between general polyhedra (일반적인 다면체 사이의 최소거리 계산을 위한 효율적인 알고리즘의 계산)

  • 임준근;오재윤;김기호;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1876-1879
    • /
    • 1997
  • This paper developes an efficient algorithm for the minimum distance calculation between general polyhedra(convex and/or concave). The polyhedron approximates and object using flat polygons which composed of more than three veritices. The algorithm developed in this paper basically computes minimun distance betwen two convex polygons and finds a set of polygons whcih makes a global minimum distance. The advantage of the algorithm is that the global minimum distance can be computed in any cases. But the big disadvantage is that minimum distance computing time is repidly increased with the number of polygons which used to approximate an object. This paper developes a method to eliminate unnecessary sets of polygons, and an efficinet algorithm to compute a minimum distance between two polygons in order to compensate the inherent disadvantage of the algorithm. It takes only a few times iteration to find minimum distance for msot polygons. The correctness of the algortihm are visually tested with a line which connects two points making a global minimum distance of simple convex object(box) and concave object(pipe). The algorithm can find minimum distance between two convex objects made of about 200 polygons respectively less than a second computing time.

  • PDF

Improved Rendering on Spherical Coordinate System using Convex Hull (컨벡스 헐을 이용한 개선된 구 좌표계 기반 렌더링 방법)

  • Kim, Nam-Jung;Hong, Hyun-Ki
    • Journal of Korea Game Society
    • /
    • v.10 no.1
    • /
    • pp.157-165
    • /
    • 2010
  • This paper presents a novel real-time rendering algorithm based on spherical coordinate system of the object using convex hull. While OpenGL rendering pipeline touches all vertices of an object, the proposed method takes account the only visible vertices by examining the visible triangles of the object. In order to determine the visible areas of the object in its spherical coordinate representation, the proposed method uses 3D geometric relation of 6 plane equations of the camera frustum and the bounding sphere of the object. In addition, we compute the convex hull of the object and its maximum side factors for hidden surface removal. Simulation results showed that the quality of result image is almost same compared to original image and rendering performance is greatly improved.

Areas associated with a Strictly Locally Convex Curve

  • Kim, Dong-Soo;Kim, Dong Seo;Kim, Young Ho;Bae, Hyun Seon
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.583-595
    • /
    • 2016
  • Archimedes showed that for a point P on a parabola X and a chord AB of X parallel to the tangent of X at P, the area S of the region bounded by the parabola X and chord AB is four thirds of the area T of triangle ${\Delta}ABP$. It is well known that the area U formed by three tangents to a parabola is half of the area T of the triangle formed by joining their points of contact. Recently, the first and third authors of the present paper and others proved that among strictly locally convex curves in the plane ${\mathbb{R}}^2$, these two properties are characteristic ones of parabolas. In this article, in order to generalize the above mentioned property $S={\frac{4}{3}}T$ for parabolas we study strictly locally convex curves in the plane ${\mathbb{R}}^2$ satisfying $S={\lambda}T+{\nu}U$, where ${\lambda}$ and ${\nu}$ are some functions on the curves. As a result, we present two conditions which are necessary and sufficient for a strictly locally convex curve in the plane to be an open arc of a parabola.

Active and Passive Beamforming for IRS-Aided Vehicle Communication

  • Xiangping Kong;Yu Wang;Lei Zhang;Yulong Shang;Ziyan Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1503-1515
    • /
    • 2023
  • This paper considers the jointly active and passive beamforming design in the IRS-aided MISO downlink vehicle communication system where both V2I and V2V communication paradigms coexist. We formulate the problem as an optimization problem aiming to minimize the total transmit power of the base station subject to SINR requirements of both V2I and V2V users, total transmit power of base station and IRS's phase shift constraints. To deal with this non-convex problem, we propose a method which can alternately optimize the active beamforming at the base station and the passive beamforming at the IRS. By using first-order Taylor expansion, matrix analysis theory and penalized convex-concave process method, the non-convex optimization problem with coupled variables is converted into two decoupled convex sub-problems. The simulation results show that the proposed alternate optimization algorithm can significantly decrease the total transmit power of the vehicle base station.

A Study on the Irregular Nesting Problem Using Genetic Algorithm and No Fit Polygon Methodology (유전 알고리즘과 No Fit Polygon법을 이용한 임의 형상 부재 최적배치 연구)

  • 유병항;김동준
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.77-82
    • /
    • 2004
  • The purpose of this study is to develop a nesting algorithm, using a genetic algorithm to optimize nesting order, and modified No Fit Polygon(NFP) methodology to place parts with the order generated from the previous genetic algorithm. Various genetic algorithm techniques, which have thus far been applied to the Travelling Salesman Problem, were tested. The partially mapped crossover method, the inversion method for mutation, the elitist strategy, and the linear scaling method of fitness value were selected to optimize the nesting order. A modified NFP methodology, with improved searching capability for non-convex polygon, was applied repeatedly to the placement of parts according to the order generated from previous genetic algorithm. Modified NFP, combined with the genetic algorithms that have been proven in TSP, were applied to the nesting problem. For two example cases, the combined nesting algorithm, proposed in this study, shows better results than that from previous studies.

Design of a Low-Order H Controller Using an Iterative LMI Method (반복 선형행렬부등식을 이용한 저차원 H 제어기 설계)

  • Kim Chun-Kyung;Kim Kook-Hun;Moon Young-Hyun;Kim Seog-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.279-283
    • /
    • 2005
  • This paper deals with the design of a low-order H/sub ∞/ controller by using an iterative linear matrix inequality (LMI) method. The low-order H/sub ∞/ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, the recently developed penalty function method is applied. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. Numerical experiments showed the effectiveness of the proposed algorithm.

Containment Control for Second-order Multi-agent Systems with Input Saturations (입력 포화를 고려한 2차 다중 에이전트 시스템을 위한 봉쇄제어)

  • Young-Hun, Lim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.109-116
    • /
    • 2023
  • In this paper, we study the containment control problem for second-order multi-agent systems, which consists of multiple leaders and followers. The goal is to drive the followers toward the convex hull spanned by the leaders. Thus, the swarm behavior can be obtained by controlling the entire group by the leaders. This paper considers the leaders move at a constant speed and the followers have input saturations. Moreover, we assume that the followers can exchange information with neighbors, and only relative state information is available. Under these assumptions, we propose the Proportional-Integral based distributed control algorithm to solve the containment control problem with moving leaders. Moreover, based on Lasalle's invariance principle, the conditions for the control gains that guarantee the convergence of the followers to the convex hull spanned by the leaders are investigated, and it was shown that it can be designed only using the system parameter. Finally, the simulations are conducted to validate the theoretical result.

Robust EOQ Models with Decreasing Cost Functions (감소하는 비용함수를 가진 Robust EOQ 모형)

  • Lim, Sung-Mook
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.2
    • /
    • pp.99-107
    • /
    • 2007
  • We consider (worst-case) robust optimization versions of the Economic Order Quantity (EOQ) model with decreasing cost functions. Two variants of the EOQ model are discussed, in which the purchasing costs are decreasing power functions in either the order quantity or demand rate. We develop the corresponding worst-case robust optimization models of the two variants, where the parameters in the purchasing cost function of each model are uncertain but known to lie in an ellipsoid. For the robust EOQ model with the purchasing cost being a decreasing function of the demand rate, we derive the analytical optimal solution. For the robust EOQ model with the purchasing cost being a decreasing function of the order quantity, we prove that it is a convex optimization problem, and thus lends itself to efficient numerical algorithms.

A Robust Joint Optimal Pricing and Lot-Sizing Model

  • Lim, Sungmook
    • Management Science and Financial Engineering
    • /
    • v.18 no.2
    • /
    • pp.23-27
    • /
    • 2012
  • The problem of jointly determining a robust optimal bundle of price and order quantity for a retailer in a single-retailer, single supplier, single-product supply chain is considered. Demand is modeled as a decreasing power function of product price, and unit purchasing cost is modeled as a decreasing power function of order quantity and demand. Parameters defining the two power functions are uncertain but their possible values are characterized by ellipsoids. We extend a previous study in two ways; the purchasing cost function is generalized to take into account the economies of scale realized by higher product demand in addition to larger order quantity, and an exact transformation into an equivalent convex optimization program is developed instead of a geometric programming approximation scheme proposed in the previous study.