• 제목/요약/키워드: Convex Function

검색결과 446건 처리시간 0.026초

Weight 최소화법을 이용한 외로 설계 (A Circuit Design Using Weight Minimization Method)

  • 김희석;임제택
    • 대한전자공학회논문지
    • /
    • 제22권2호
    • /
    • pp.82-89
    • /
    • 1985
  • MCO 문제의 해석을 하기 위한 weight P-norm방법을 연구하여 새로운 non-inferior해를 구하였다. Weight 최소화방법을 MOSFET NAND 게이트에 적용하여 최적 non-inferior해를 구하였다. 또한 본 논문에서 응용한 최소화방법은 목적함수가 non-convex일때도 적용된다. 본 논문의 최소화 방법의 결과를 Lightner의 결과와 비교하여 효율성을 입증하였다.

  • PDF

IEEE 802.11 DCF에서의 게임 이론적 접근방법 소개 (Survey on IEEE 802.11 DCF Game Theoretic Approaches)

  • 최병철;김정녀;류재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.240-242
    • /
    • 2007
  • The game theoretic analysis in wireless networks can be classified into the jamming game of the physical layer, the multiple access game of the medium access layer, the forwarder's dilemma and joint packet forwarding game of the network layer, and etc. In this paper, the game theoretic analysis about the multiple access game that selfish nodes exist in the IEEE 802.11 DCF(Distributed Coordination Function) wireless networks is addressed. In this' wireless networks, the modeling of the CSMA/CA protocol based DCF, the utility or payoff function calculation of the game, the system optimization (using optimization theory or convex optimization), and selection of Pareto-optimality and Nash Equilibrium in game strategies are the important elements for analyzing how nodes are operated in the steady state of system. Finally, the main issues about the game theory in the wireless network are introduced.

  • PDF

Convex hulls and extreme points of families of symmetric univalent functions

  • Hwang, J.S.
    • 대한수학회보
    • /
    • 제33권1호
    • /
    • pp.1-16
    • /
    • 1996
  • Earlier in 1935[12], M. S. Robertson introduced the class of quadrant preserving functions. More precisely, let Q be the class of all functions f(z) analytic in the unit disk $D = {z : $\mid$z$\mid$ < 1}$ such that f(0) = 0, f'(0) = 1, and the range f(z) is in the j-th quadrant whenever z is in the j-th quadrant of D, j = 1,2,3,4. This class Q contains the subclass of normalized, odd univalent functions which have real coefficients. On the other hand, this class Q is contained in the class T of odd typically real functions which was introduced by W. Rogosinski [13]. Clearly, if $f \in Q$, then f(z) is real when z is real and therefore the coefficients of f are all real. Recently, it was observed by Y. Abu-Muhanna and T. H. MacGregor [1] that any function $f \in Q$ is odd. Instead of functions "preserving quadrants", the authors [1] have introduced the notion of "preserving sectors".

  • PDF

Convexity preserving piecewise rational interpolation for planar curves

  • Sarfraz, Muhammad
    • 대한수학회보
    • /
    • 제29권2호
    • /
    • pp.193-200
    • /
    • 1992
  • This paper uses a piecewise ratonal cubic interpolant to solve the problem of shape preserving interpolation for plane curves; scalar curves are also considered as a special case. The results derived here are actually the extensions of the convexity preserving results of Delbourgo and Gregory [Delbourgo and Gregory'85] who developed a $C^{1}$ shape preserving interpolation scheme for scalar curves using the same piecewise rational function. They derived the ocnstraints, on the shape parameters occuring in the rational function under discussion, to make the interpolant preserve the convex shape of the data. This paper begins with some preliminaries about the rational cubic interpolant. The constraints consistent with convex data, are derived in Sections 3. These constraints are dependent on the tangent vectors. The description of the tangent vectors, which are consistent and dependent on the given data, is made in Section 4. the convexity preserving results are explained with examples in Section 5.

  • PDF

Feasibility Test of the Numerical Optimization for the Fast IMRT Planning

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Dempsey, James F.
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2005년도 제30회 춘계학술대회
    • /
    • pp.79-82
    • /
    • 2005
  • In this study, we have tested the feasibility of the convex non-linear objective model and the line search optimization method for the fluence map optimization (FMO). We've created the convex nonlinear objective function with simple bound constraints and attained the optimal solution using well-known gradient algorithms with an Armijo line search that requires sufficient objective function decrease. The algorithms were applied to 10 head-and-neck cases. The numbers of beamlets were between 900 and 2,100 with a 3 mm isotropic dose grid. Nonlinear optimization methods could efficiently solve the IMRT FMO problem in well under a minute with high quality for clinical cases.

  • PDF

파라미터 불확실성을 갖는 선형 시스템에 대한 준최적 강인 칼만필터 설계 (Design of Suboptimal Robust Kalman Filter for Linear Systems with Parameter Uncertainty)

  • 진승희;김경근;박진배;윤태성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.620-623
    • /
    • 1997
  • This paper is concerned with the design of a suboptimal Kalman filter with robust state estimation performance for system models represented in the state space, which are subjected to parameter uncertainties in both the state and measurement matrices. Under the assumption that the uncertain system is quadratically stable, if the augmented system composed of the uncertain system and the filter is controllable, the proposed filter can provide the upper bound of the estimation error variance for all admissible uncertain parameters. This upper bound can be represented as the convex function of a parameter introduced in the design procedure, and the optimized upper bound of the estimation error variance can also be found via the optimization of this convex function.

  • PDF

RADII PROBLEMS OF CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS WITH FIXED SECOND COEFFICIENTS

  • PORWAL, SAURABH;BULUT, SERAP
    • 호남수학학술지
    • /
    • 제37권3호
    • /
    • pp.317-323
    • /
    • 2015
  • The purpose of the present paper is to study certain radii problems for the function $$f(z)=\[{\frac{z^{1-{\gamma}}}{{\gamma}+{\beta}}}\(z^{\gamma}[D^nF(z)]^{\beta}\)^{\prime}\]^{1/{\beta}}$$, where ${\beta}$ is a positive real number, ${\gamma}$ is a complex number such that ${\gamma}+{\beta}{\neq}0$ and the function F(z) varies various subclasses of analytic functions with fixed second coefficients. Relevant connections of the results presented herewith various well-known results are briefly indicated.

실험 계획법에 기반한 키넥트 센서의 최적 깊이 캘리브레이션 방법 (Optimal Depth Calibration for KinectTM Sensors via an Experimental Design Method)

  • 박재한;배지훈;백문홍
    • 제어로봇시스템학회논문지
    • /
    • 제21권11호
    • /
    • pp.1003-1007
    • /
    • 2015
  • Depth calibration is a procedure for finding the conversion function that maps disparity data from a depth-sensing camera to actual distance information. In this paper, we present an optimal depth calibration method for Kinect$^{TM}$ sensors based on an experimental design and convex optimization. The proposed method, which utilizes multiple measurements from only two points, suggests a simplified calibration procedure. The confidence ellipsoids obtained from a series of simulations confirm that a simpler procedure produces a more reliable calibration function.

진화 연산을 이용한 능동외곽기반의 윤곽선검출에 관한 연구 (Active Contour Based Edge Detection Using Evolutionary Computation)

  • 강현태;조덕환;황기현;문경준;박준호;이화석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2405-2407
    • /
    • 2001
  • In this paper, we apply and evolutionary computation(EC), probabilistic optimization algorithm, to active contour. A number of problems exist associated with such as algorithm initialization, existence of local minima, non-convex search space, and the selection of model parameters in conventional models. We propose an adequate fitness function for these problems. The determination of fitness function adequate to active contour using EC is important in search capability. As a result of applying the proposed method to non-convex object shape, we improve the unstability and contraction phenomena, in nature, of snake generated in deformable contour optimization.

  • PDF

Complexity Issues of Perfect Roman Domination in Graphs

  • Chakradhar, Padamutham;Reddy, Palagiri Venkata Subba
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.661-669
    • /
    • 2021
  • For a simple, undirected graph G = (V, E), a perfect Roman dominating function (PRDF) f : V → {0, 1, 2} has the property that, every vertex u with f(u) = 0 is adjacent to exactly one vertex v for which f(v) = 2. The weight of a PRDF is the sum f(V) = ∑v∈V f(v). The minimum weight of a PRDF is called the perfect Roman domination number, denoted by γRP(G). Given a graph G and a positive integer k, the PRDF problem is to check whether G has a perfect Roman dominating function of weight at most k. In this paper, we first investigate the complexity of PRDF problem for some subclasses of bipartite graphs namely, star convex bipartite graphs and comb convex bipartite graphs. Then we show that PRDF problem is linear time solvable for bounded tree-width graphs, chain graphs and threshold graphs, a subclass of split graphs.