Bull. Korean Math. Soc. 33 (1996), No. 1, pp. 1-16

CONVEX HULLS AND EXTREME POINTS OF
FAMILIES OF SYMMETRIC UNIVALENT FUNCTIONS

J. S. HwANG

1. Introduction

Earlier in 1935[12], M. S. Robertson introduced the class of quadrant
preserving functions. More precisely, let ) be the class of all functions
f(z) analytic in the unit disk D = {z : |z| < 1} such that f(0) =
0, f'(0) = 1, and the range f(z) is in the j-th quadrant whenever z is in
the j-th quadrant of D, j = 1,2, 3,4. This class () contains the subclass
of normalized, odd univalent functions which have real coefficients. On
the other hand, this class @ is contained in the class T of odd typically
real functions which was introduced by W. Rogosinski [13]. Clearly, if
f € Q, then f(z) is real when z is real and therefore the coefficients of
f are all real. Recently, it was observed by Y. Abu-Muhanna and T.
H. MacGregor [1] that any function f € Q is odd. Instead of functions
“preserving quadrants”, the authors [1] have introduced the notion of
“preserving sectors”. Following their notations, we define the sectors

AJ' and B]' by

Aj

I

{w : &~;—1)z < argw < 2—271} and

B; {e_”/kw:wEA]},

Received March 14, 1994. Revised September 30, 1994

1991 AMS Subject Classification: Primary 30C45; Secondary 30C50, 30C75.

Key words and phrases: Convex hull, extreme point, symmetric and univalent
function, coeflicient estimate, and cluster set.



J. S. Hwang

where k is a positive integer and j = 1,2,--- , k. Then the three classes
Ty. Ti and Qi are defined respectively by

feT, if f(z)EAJ- whenever 26,4]'F1D(j:1,2,-~ LR,
fety if f(z) € B; whenever z € B;ND (j =1,2,--- k),
Qk:TkﬂTk.

Clearly, we have Ty = T and @, = Q. Geometrically speaking, func-
tions of this kind Qy are k-fold symmetric, see [1, Lemma 5].

We shall need the notion of extreme points. As usual, an extreme
point of a set S is a point of § that cannot be written as a proper
convex combination of two other points of S, see Dunford and Schwartz
[6, p.439]. Through the paper [1], we see that the main concern there
is the determination of the extreme points of the classes Q. In [1,
Theorem 6], they proved that a function f € @ is an extreme point of
Qs if and only if the radial limit function f(e'%) belongs to one of the
rays arg w = +jn/k (j = 0,1,--- k) for almost all § on [0,2x]. Let
Ui be the set of extreme points of @ which are univalent in D. In [1,
Theorem 4], they proved the following determination of Uy = U.

THEOREM 1. A function f € U if and only if

Flz) = 2/1(1 — 22?)(1 - 22%))3 (o

=1).

At the end on their paper [1], Abu-Muhanna and MacGregor posed
the question of solving extremal problems for the classes Q. One of
them will be automatically the determination of the set U,. We shall
answer this problem by the following two theorems depending on the
integer k to be odd or even.

THEOREM 2. If k is odd, then Uy contains exactly two elements 1.e.

fi(z) = z/(1 + 22k)1/k and fa(2) = 2/(1 = 2F)¥*¥,
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THEOREM 3. If k is even, then f € Uy if and only if
f(z) = z/[(1 — e*02%)(1 — e kO K\ /%, for some 0 <6 < 2m.

Clearly, Theorem 1 follows immediately from Theorem 3 when k=2.
Also notice that the result of Theorem 2 is surprising in the sense that
for odd k the closed convex hull U} of the set Uy is homeomorphic to
a line segment. Usually, one may ask what kind of non-trivial class
of functions can have only two extreme points. Theorem 2 provides
such an example. It is worth to mention that the present work is a
continuation of the previous one [§].

2. Symmetric function and its power series

As usual (W. K. Hayman [7, p.113]), a function f is called k-fold

symmetric if its power series has the form

o

flz)= Z ank+1z"k+l for z€ D.

n=0

It is known, see [1, formula(23)] that the condition on the power series
1s equivalent to the following condition

(1) fle?m /¥y = 27k f(2) for z € D.

Moreover, if f € Q) them the coefficients of f must be real, because
f(z) is real when z is real. It follows that

(2) f(2) = f(z) for z€D.

For later purpose, we formulate the above two relations by the following

LEMMA 1. If f € Qy, then f satisfies both (1) and (2).
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Determination of f € Uy from its poles

Clearly, if f is a function in Uy, then the set of po.es of f is completely
determined. Conversely, we shall prove that the knowledge of one pole
of f completely determines the function f. For this, we shall first prove
the following meromorphic property of functions in Uy.

LEMMA 2. If f is a function in Uy, then f has no essential singularity.

Proof. Suppose on the contrary that f has an essential singularity
at e Consider the function ¢ = f*. Then this point ¢t
essential singularity of ¢. Applying[l, theorem 6 to f, we find that
g(c*?) is real for almost every 6 on [0,2x]. It follows from Schwarz

rer 1s also an

reflection principle that the function ¢ can be centinued analytically
across the unit cirele. Let G be the extension of ¢ 1.c.

G(z) = g(=) for 2z ¢ D,
g(1/2) for z € D*={z:lz| > 1}.

Then clearly the function G is finitely valent in L' U D* and the ‘Pfor(‘
assunies no complex values infinitely often in any aeighborhood of €’
This, however, contradicts a theorem of Picard, see [5, Theorem 1.4].
The Lemma is proved.

From the above Lenuna 2, we can see that each function f in Uy
is meromorphic in the whole plane. By applying Lemma 1 and the
univalency of f, we shall prove the following distribution of pole set of
f. For convenience, we denote the ray by

Ry ={w:0 < | < oo, arg w = gr/k}, 5 =0, x1,--- .tk

LeMMA 3. If f € Uy, then on or between any two consecutive rays
R, and R4, there is at most one pole and the pole set of f forms pairly
symmetric with respect to each ray It;.

Proof. To prove the first assertion, we suppos: that there are two
poles ' and ¢ lying on or between R, and R4, and assume that no
pole of [ lies on these two open arcs (e 'J”/k, e} and (e*P. ¢ L+ /ky

where jr/k <o < 3 < (j+ 1)n/k. Let S be the sctor bounded by R;
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and R;;;. Then by the definition of Qx i.e. f € Ty and f € Tk, we can
see that f preserves the sector S, i.e. f(z) € § whenever = € SN D.
Moreover, from [1, Theorem 6], we find that

f(e'®) € R; U R4, for all ja/k 9 < (5 + U)n/k.
By the continuity of f, we conclude that

f(e'*) € R; for jr/k <0 < a,

Since f(0) = 0 and the function f is univalent, thus the range f(z)
assumes every value on R; once when z varies from o to ¢/™/* along
R; and then up to the pole ¢'* along the circle. The same property
holds on R;;.

We now consider an arbitrary 6 with o < 6 < . We must have
either f(e'%) e R; or Rjiy.

In cither case, it is easy to see that the function f cannot be univalent
in D which is a contradiction.

To prove the second part, we again let z = ¢'® be a pole of f, then
by Lemma 1 we can see that both

<

ei2im/k and z* = (e-12in/kz) = et ((2im/k)—a)

are poles of f. It follows that the pair (z,2*) is symmetric with respect
to the ray R;. This completes the proof.

With the helps of the above lemmas, we are now able to prove the
following determination of functions in Uy from their pole sets.

LEMMA 4. If f € Uy and p is a pole of f, then the set of all poles of
f is completely determined by

P =SUS, where S = Lrjkz—ol{pemr]‘/k} and § = Ujkz‘ol{pe—“ﬂ'/’“},

5
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Conversely, if f € Uy with pole set P, then f(z) = z/pi(z), where

pe(2) = T2 [(1 = 2pe™PTIR) (1 = zpetI /MY E,

Proof. According to Lemima 1, we have
fle®™/key = ™k f(z)  and f(2) = f(z).

It follows that if p is a pole of f then both e*2™/*p and p are also poles
of f. This shows that each point in P is a pole of f. It remains to
prove that f has no pole other than the pole set P. Owing to Lemma
3, we find that on or between any two consecutive rays R; and R, 4,
there is at most one pole, so that the number of poles of f is at most
2k. If p* ¢ P were a pole of f and if P* is the associated set of p*,
then the set P* M P is empty, so that the number of poles of f would
be 4k > 2k, a contradiction.

Conversely, if f € Uy with pole set P, then j(z) = zg(z)/pr(2)
for some function ¢ which is analytic in D and has no pole on the
boundary of D. It suffices to prove that ¢ = 1 identically. In view of
Lemina 2, it is easy to see that this function is entire and bounded. It
follows from Liouville's theorem that ¢ is a constaat. Therefore from
the normalization f'(0) = 1 we conclude that g = 1

4. Proof of Theorem 2

Let f be a function in the set U. We may, without loss of generality,
assume that the point ¢*® with 0 £ 6 < 7/k is a pole of f. We shall
prove that & = 0 or #/(2k). Suppose that § > 0. then by choosing
J = (k—=1)/2 in Lemma 4, we find that both ¢4 7(k=1/k) 5 | o~i6
are poles of f. By Lemma 3 with j = %_k—l, we can see that these two
poles are symmetric with respect to the origin and therefore we obtain

O+mk—1)/k=m—-6 or §=rn/(k).
Again, by Lemma 4, we find that the set of all poles of f must be of
the forms em(2/+1/2%) 5 — .1 .. k — 1. This yields that f(z) =
2/(1 4 22Uk
By the same argument, if § = 0, then flz) = 2/(1 — z*)2/% This
completes the proof.
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COROLLARY 1. Ifk is odd and if U} is the closed convex hull of Uy,
then any function f € U} can be written as

f(z) =tz/(1 4 22)1/k 4 (1—1)z/(1 — zk)Q/k for some 0S¢t S 1.

Proof. Since the space U} is convex, thus the assertion follows from
Theorem 2.

COROLLARY 2. If k is odd and f € Uy, then f(1) < oo if and only

Proof. Clearly, if f = f; then f(1) = 1/2Y/% < oo. Conversely, by
observing f,(1) = oo in Corollary 1, we find that ¢ =1 or f = f;. This
proves the result.

From the above results, we can see that the structure of U}, where
k is odd, is completely determined. However, the same determination
is not true for k to be even, because in this case U has infinitely many
points.

5. Proof of Theorem 3

Let €' be a pole of f, then again by Lemma 4, we can sce that the
p gain by e
set of all poles of f is completely determined by SUS, where

S = l:]]!c:-—ol {ei(9+27\'j/k)}and5v — U;C;-Ol{',:—i(e"l'??rj/k)}.

Clearly, the products of all poles in S and S respectively give the poly-
nomials 1 — e *92% and 1 — e**92%. This yields the assertion.
In particular, if ¥ = 2, then we obtain Theorm 1 as a corollary.

6. Extension of Robertson’s Theorem

In {12], Robertson proved that if

(3) fz)=z2+Y bapg2®"t!

n=1

7
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belongs to class Q, then
(4) lb3] =1 and [byp—y| + [bang1| 2, n=1,2,...

Naturally, we may ask whether the inequalities in (4) can be im-
proved to be |bypy] £ 1, n = 1,2,---. Without an additional condi-
tion, one can not expect to have such an improvement. In fact, Scha-
effer and Spencer {14, p.633] constructed a function f € Q for which
bs = ¢ /% 4 -;— > 1. However, there is subclass of @ for which we
do have the desired improvement. As before, we lew U* be the closed
convex hull of the set U. We then have the following extension of
Robertson’s Theorem.

THrOREM 4. If f € U* and is written of the form (3), then |by, 41| <
1formn=1,2,---

Proof. We shall first prove the assertion for a function f in U. In
view of Theorem 1, the function f can be expanded as

1 )
fl2) =4 5o+ @)z + o b ()2 4 by ()2 4
where
I-3---(2(2n)—-1), 4 22
b n p— " k13
an+1(T) 57m (2)] (z )+
n—1 . .
1-3---(2j-1) 1-3---22n—-j)-1) 5 ., ; jpan=
]Z::l 274! ' 22n=3(2n — j)! (a2 T )
1-3---(2n—=-1)012 ,, .
+[ 2nn! R
1-3---(2(2 )—1), .
bamas() = 3--(2(2n +1) )(:EZn—{—l + g

2201 (20 + 1))

1-3- "J-l) 1:3--(22n—j534+1)-1)
+ Z 22n=j+1(2n — j + 1)

=1
X (:,p]iZn—]+] 4 j}szn_]+l),
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It follows that the maximum of byn4;(z) in {z] £ 1 is attained at
byny;(1), ie.

[b4nyj(x)] £ byng (1) for |z| <1, where j=1,3.
Now, by substituting r = 1 into Theorem 1, we find that

f(z )— Z 2t = szn+1(1)22"+1-
n=0

n=0
We thus conclude the following desired result

(8)  |bants(x)] S bynyj(1) =1, for || £1 and j=1,3.

Let A be the set of all functions analytic in D, then A is a locally
convex linear topological space with respect to the topology of uniform
convergence on compact subsets of D, see {15, p.150]. Let S be the
subset of A containing all normalized univalent functions in D, then S
is compact in A, see [7, p.4], i.e. § is closed and uniformly bounded
on a compact subset of D. It follows that the space U* is compact in
A. Clearly, the space U* is convex and therefore by Krein-Milman’s
Theorem, see(6, p.440], each function f € U* can be represented by

N N
f(Z)= Z apgp(z), where a, >0, Z ap =1, and g, is a function
p=1 P=1

in U, for each p = 1,2,--- ,N. We expand each g, as

9p(2) =z + Z ban+1(p)2*"F,

n=1
then we have

o<

2

= n=1

N [
2n+1 _2n41
E apbon1(p)| 22" =2 4 g Cont12°" 70

By virtue of (5), we obtain
N

N
leant1] S Y aplbansa(p)] S Z

p=1
This completes the proof.

As a consequence of the above Theorem 4, we obtain
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COROLLARY 3. The space U is not a compact subset of A.

Proof. Suppose on the contrary that U were a compact subset of A,
then by Krein-Milman’s Theorem we would have I C U*. However, the
aforementioned function f of Schaeffer and Spencer [14, p.633] satisfies
that f € U and f ¢ U™, a contradiction.

Notice that the assertion of Theorem 4 can not be derived from
Lowner’s Theorem, see {11, Theorem 2.8]. For example, the function

- A: 1 1 __.00,4124-—1
.f(~)—2(1+22+1ﬁ22)~;ﬁ :

belongs to the class U* which does not satisfy the following starlike
condition, see [11, Theorem 2.5],

Re =f'(2)/f(z) >0 for z € D.

of course, those extreme points of [/* are starlike. On the other hand,
this class U* does not contain all normalized starlike functions because
each function in U* has some poles on the boundary of D. Thus any
bounded starlike function does not belong to this ~lass U*.

7. Coefficient estimates of the classes U}

In contrast to the results of H. Waadeland[16] and Ch. Pommerenke
[10, Theorem 3], we shall prove the following coefficient estimates for
functions in U],

THEOREM 5. If f € U} and f(2) = Y oe i anks12™¥1. Then

224+ k)242k)-- (24 (n—1)k)
Enn!

(6) Janks1l S for n=1,2,--

Proof. 1t is sufficient to prove that the assertion is true for all func-
tions in Uy. Clearly, if k is odd, then the assertion follows from Theorem

2.

10
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To prove the even case, we need only use the argument of Theroem
4 together with the result of Theorem 3. Let z = e*® and f, = f, then
by Theorem 3, f, can be expanded as

1
fr(z) =2+ Z(T +o)M g Ankr1(x)z™ L
where the coefficients @nk+1() can actually be written as that of The-
orem 4, if necessary. By the same argument as Theorem 4, we obtain

224 k)2+2k) (24 (n—1)k)
(1) = e .
n!
This shows that the assertion (6) is true for all functions in Uy. Again,

by applying Krein-Milman’s Theorem, we obtain the same result for
any function in U}. This completes the proof.

|(lnk+1(~T) § A k41

As a consequence, we find that Theorem 4 is & particular case of the
following corollary when & = 2.

COROLLARY 4. Under the hypothesis of Theorem 5, we have

2
'G"HII‘S‘E for n=1,2,--.

Proof. Since k 2 2, the right hand side of (6) is not greater than
2/k. This yields the desired result.
=

Notice that the functions considered in the above Theorem 5 are
k-fold symmetric and therefore one might expect to derive the asser-
tion from the aforementioned theorems of Waadeland and Pommerenke.
However, this is not the case due to the fact that Waadeland consid-
ered only for starlike k-fold symmetric functions while Pommerenke for
close-to-convex k-fold symmetric functions. To see this, we need only
observe the case k = 2. In view of Section 6, we know that the func-
tion f(z) = z/(1 — 2*) belongs to U* but not starlike. Moreover, this
function 1s not univalent in D and therefore it is not a close-to-convex
function, see [11, Theorem 2.11). Of course, every starlike function is
close-to-convex, see [11, Theorem 2.5]. Thus the assertion of Theorem
5 cannot be derived from [10] or (16].

11
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8. Extreme points and potentials

As long as the kernels are given, one can always develop the po-
tentials of such kernels. Things of this kind have been systematically
developed by Brickman, Hallenbeck, MacGregor, and Wilken [2, 3]. By
applying [2, Theorem 1], [3, Theorem 3] and Theorem 3, We obtain
immediately the following result.

THEOREM 6. Let X be the unit circle {z : |z] = 1},P the set of
probability measures on X,k any positive integer, and F the set of
functions f on D defined by

Julzh= /\ (- .rzk)(i —npedsle) w e X and pEeF

Then F = U}, the map pr — f, is one-to-one, and the extreme points
of U} arc precisely the fuuctions

~

o [(1 = xz%)(1 — azk)t/* r e X.

Notice that by expanding f, as a power series

oC

fulz) = Z </X Ank+1(T) du(:ﬂ)) PRLRRN

n=0

one can obtain the same result as Theorem 5.

9. Numerical characterization of extreme points

In view of [1, Theorem 6] we can see that their determination of the
extreme points of Qx bases on the geometrical consideration. We shall
now present a numerical characterization of functions in the set Ug.

For this, we first prove the following necessary condition for functions
in Uy.

12
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THEOREM 7. If f € Uy, then

(7) D(f) = 1/1f(e®™™/F)F 41/ |f(er R F = 4,
Proof. Let z, = ?™™/% and z, = @n+D7/k then, zf = 1 and
z¥ = —1. If k even, then by Theorem 3, we have

1/‘f(21)1k =(1- eike)(l — e7*%) and
/|f(z2)F = (14 ™) (1 4 %),
By summing up the above two equalities, we obtain the equation (7).

On the other hand, if k is add, then by Theorem 2, we get the same
result.
Conversely, we can only prove a sufficient condition for the odd case.

TuroreM 8. If f € Uy and f satisfies (7), where k is odd, then f
is a function in Uy.

Proof. Let f be written as in Corollary 1 and let z; and z; be defined
in the proof of Theorem 7. Then we have f(z;) = oo for ¢t < 1 and

flz2) = z[t/2V/5 + (1 )/28/%).
And equation (7) becomes D(f) = [t/2Y/F 4+ (1 - 1)/22/*]~% = d(t) for
0S5t <1,

Clearly, the derivative d'(t) < 0, so that the maximum is attained
at d(0) = 4. This concludes that d(t) = 4 if and only if t = 0 or 1 and
therefore f is a function in Uy.

Notice that Theorem 8 should be true if & is even.

10. Cluster sets of p-valent functions

In this section, we shall present a simple proof to a result of Abu-
Muhanna and MacGregor [1, Lemma 4]. For this, we shall need the
notion of cluster sets and p-valent functions, refer the book of Colling-
wood and Lohwater [5] and Hayman [7]. The cluster set C(f) of a
function f defined on D is meant the set of all values w for which there
is a sequence {z,} of points in D tending to a boundary point of D and
satisfying f(z,) — w as n — oo. A function f defined on D is called
to be p-valent if for any value w the equation f{z) = w has at most p
solutions in D.

13
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LEMMA 5. If f is a function meromorphic and p-valent on D, then
the cluster set C(f) has no interior point. Furthermore, there is a con-
formal mapping f whose cluster set C(f) is of positive two dimensional
measure.

Proof. Let R(f) be the range set of f, i.e. a valuec w € R(f) if there
1s a sequence {z,} of points in D tending to a boundary point of D for
which f(z,) =w,n =1,2,--- Then by a theorem of Collingwood and
Cartwright [4, Theorem 8], we have

Interior of C(f) C R(f), the closure of R(f).

Since the function f is p-valent, thus the range set F(f) is empty. This
yields the first assertion.

'To prove the second part, we need only apply a theorem of Osgood
[9]. We then have a Jordan domain J whose boundary 0J is of positive
two dimensional measure. Let f be a conformal mapping from D onto
J, then the cluster set C'(f) = 8.J serves the desired property.

With the help of Lemma 5 and a theorem of Iversen, see [5, Theorem
5.2], we are now able to prove the following extension of [1, Lemma 4].
Our method here is much simple.

COROLLARY 5. Let f be a function meromorphic and p-valent in D
and let ' be a measurable subset of [0, 27| with measure [I'| = 27 so that
f(e*®) exists and is finite when @ ¢ T. If [ = {w: w= f(e'%),0 T}
and M = f(D) then OM C L.

~ Proof. For any point e*®, we denote C(f, e'?) the cluster set of f at
e'?. Clearly, if w € OM, then we have w € C(f, elé) for some point e*9.
It follows from Lemma 5 that C(f,e?) = 0C(f, *?).

On the other hand, from the aforementioned theorem of Iversen, we

find that
IC(f,e) C Cy(f,e*) C L,

where C(f,e'®) denotes the boundary cluster set of f at €', see (5,

p-81]. This concludes that w € L and the proof es complete.

14
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11. Appendix

In this section, we shall apply the result of Corollary 5, to present
an altermative proof of Theorem 1 which is shorter than that of (1,
Theorem 4 ]. Let f be the function defined by Theorem 1, then by [ 1,
Theorem 3 | we can see that f is an extreme point of Q.

Conversely, if g is univalent in D and an extreme point of @, then
by Corollary 5 and the connectivity of g on (—=1,1) U (—2,2), we can
see that the set of excluded values of g must be of the form R x 1R —
[a,b] Uic,id], R = [0, 00). Since g is odd, thus the function g(:z) is also
odd. The oddness of both g(z) and g(iz) yields that the set of excluded
values of ¢ must be of the form R xiR—[—a, a]U[—ib, ib], where a, b > 0,
and at least one of them is finite. We may assume that a < oo, then
g(1) = a < oco. Let f be defined by Theorem 1, where z is determined
by f(1)=1/(]1—z|) =aor z = €'%,6 = cos™1(1 - 1/(2a?)). It is then
sufficient to prove that f = g, i.e. to prove that

)] =1/(11+x]) =b=lg(:)].

Suppose not, say, |f(z)| < b, then f is subordinate to ¢ and so that
|f/(0)] < |¢'(0)|, contradicting to f'(0) = ¢’(0) = 1. This proves that
f=g

Finally, we like to sketch an alternative proof of Corollary 5 based
upon the method of [1, Lemma 4]. Let f be a function meromorphic and
p-valent in D. We shall first prove that there is a point w such that the
function 1/(f(z) — w) is analytic in D. Consider the maximum subset
E of D such that f is univalent in E. If the function f would assume
every value in the plane, then the restriction fg on E would have the
same property. It follows from Liouville’s Theorem that the inverse
of fg would be a constant. This establishes the desired property and
therefore we may, without loss of generality, assume that f is analytic
in D.

Instead of using Pommerenke [11, p.127] in the proof of {1, Lemma
4], we may use Hayman [7, p.45]. We then have

2m T
-2};/ |h(re'?)|d6 < M(ro)+p/ M(t)t™dt,
0 T

[}

15
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where hh = f'/% and M(#) is the maximum modulus of A, Since M(t) <

</(

1 — #)*/% for some constant ¢, thus the function A belongs to the

Hardy class. The rest argument will be the same as that of [1, Lemma
4] and we omit it.

=1

10.

1.
12.
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