• Title/Summary/Keyword: Converter Transformer

Search Result 790, Processing Time 0.042 seconds

Soft Switching DC-DC Converter for AC Module Type PV Module Integrated Converter (AC 모듈형 태양광 모듈 집적형 컨버터를 위한 소프트 스위칭 DC-DC 컨버터)

  • Youn, Sun-Jae;Kim, Young-Ho;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.247-255
    • /
    • 2013
  • In this paper, a soft switching DC-DC converter for AC module type photovoltaic (PV) module integrated converter is proposed. A push-pull converter is suitable for a low voltage PV AC module system because the step-up ratio of a high frequency transformer is high and the number of primary side switches is relatively small. However, the conventional push-pull converters do not have high efficiency because of high switching losses by hard switching and transformer losses (copper and iron losses) by high turns-ratio of the transformer. In the proposed converter, primary side switches are turned on at zero voltage switching (ZCS) condition and turned off at zero current switching (ZVS) condition through parallel resonance between secondary leakage inductance of the transformer and a resonant capacitor. Therefore the proposed push-pull converter decreases the switching loss using soft switching of the primary switches. Also, the turns-ratio of the transformer can be reduced by half using a voltage-doubler of secondary side. The theoretical analysis of the proposed converter is verified by simulation and experimental results.

Forward DC/DC Converter Using Planar Transformer (평면변압기적용 Forward DC/DC Converter)

  • Choi S. H.;Park J. Y.;Park S. S.;Kim E. S.;Lee H. Y.;Kim H. S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.149-153
    • /
    • 2003
  • In this paper, the design and implementation of a high power(300W) forward converter using a planar transformer is presented. The overall size and volume of the converter is decreased by replacing a planar transformer in stead of using a conventional winding transformer. Due to the decreased size and volume, power density of the applied forward converter is increased. Also, in this paper, the 300W ZVS forward converter with active clamp snubber circuit is compared to the 300W hard switching forward converter.

  • PDF

Optimal Design of High Frequency Transformer for 150W Class Module-Integrated Converter

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.288-294
    • /
    • 2015
  • Recently, the module-integrated converter has shown an interest in the photovoltaic generation system. In this system, the high frequency transformer should be compact and efficient. The proposed method is based on the correlation characteristic between the copper and core loss to minimize the loss of transformer. By sizing an effective cross-sectional area and window area of core, the amount of loss is minimized. This paper presents the design and analysis of high frequency transformer by using the 3D finite element model coupled with DC-DC converter circuit for more accurate analysis by considering the nonlinear voltage and current waveforms in converter circuit. The current waveform in each winding is realized by using the ideal DC voltage source and switching component. And, the thermal analysis is performed to satisfy the electrical and thermal design criteria.

The Design and Development of Flyback Transformer for Multi - Out Flyback DC-DC Converter (다(多)출력 DC-DC 플라이백 컨버터용 변압기 설계방법 및 개발)

  • Park, Jong Yeon;Kang, Do Hyung
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.163-168
    • /
    • 2000
  • This paper gives a fundamental study of the design method of Flyback Transformer(FBT) in the Multioutput Flyback DC-DC Converter. We explained a winding strategy and Core selecting of the Flyback transformer to get the design guidelines for optimizing the performance of Flyback DC-DC Converter. The final goal of this paper is to obtain design rules of the Flyback transformer to minimize the leakage inductance for good quality of DC Souce.

  • PDF

High Efficiency and Small Size Switch Mode Line Transformer(SMLT) (고효율 및 소형 스위치모드 라인 트랜스포머)

  • Kim, Jin-Hong;Yang, Jung-Woo;Jang, Du-Hee;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.237-243
    • /
    • 2019
  • A high-efficiency and small-sized switched-mode line transformer (SMLT) is proposed in this study. The conventional structure of an adapter is composed of line transformer and rectifiers. This structure has a limit in miniaturizing due to low-frequency line transformer. Another structure is composed of power factor correction (PFC) and DC/DC converter. This structure has a limit in reducing volume due to two-stage structure. As the proposed SMLT is composed of an LLC resonant converter, a high-frequency transformer can be adopted to achieve isolation standards and size reduction. This proposed structure has different operation modes in accordance with line input voltage to overcome poor line regulation. In addition, the proposed SMLT is applied to the front of a conventional PFC converter, because the SMLT output voltage is restored to rectified sinusoidal wave by using a full-bridge rectifier in the secondary side. The design of the PFC converter is easy, because the SMLT output voltage is controlled as rectified sinusoidal wave. The validity of the proposed converter is proven through a 350 W prototype.

A High Efficiency LLC Series Resonant Converter (고효율 LLC 직렬공진 컨버터)

  • Kang, Sung-In;Yoon, Kwang-Ho;Kim, Eun-Soo;Park, Jun-Ho;Lim, Dae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.424-427
    • /
    • 2007
  • The LLC series resonant converter with a LLT (Inductor-Inductor-Transformer) transformer for PDP power supply is presented. LLT transformer used to combine the inductor and transformer into one unit has the increased leakage inductance in the primary and secondary due to the winding method and the use of the gaped core. The increased leakage inductance in the primary and secondary of LLT transformer can be impacted on the DC voltage gain characteristics of LLC series resonant converter. In this paper, DC gain characteristics and the experimental results of the LLC series resonant converter with a LLT transformer are verified on the Math-CAD simulation based on the theoretical analysis and the 600W experimental prototype.

  • PDF

A Study on the Optimal Design of the Transformer in the PSFB Converter (PSFB 컨버터에서 변압기 최적 설계에 관한 연구)

  • Lee, Il-Oun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.9
    • /
    • pp.869-876
    • /
    • 2016
  • In the Phase Shifted Full Bridge(: PSFB) converter, there are several design factors including power switches, power switches' driving circuits, transformer and inductor, and rectifier stage, etc. Among them, a key factor influencing an optimal performance of the PSFB converter is the design of transformer. Especially, its effect becomes more important in low voltage and high power applications. In this paper, a study on an optimal design of transformer in the PSFB converter is presented. The design equations for the transformer are derived and analyzed in details, and an example design of the transformer for a 12V, 1200W server power supply application is showed as the result of analysis.

Operating Characteristics of LLC Series Resonant Converter (LLC 직렬공진 컨버터 동작특성)

  • Kang, Sung-In;Yoon, Kwang-Ho;Park, Jun-Ho;Huh, Dong-Young;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.472-482
    • /
    • 2007
  • The LLC series resonant converter with a LLT (Inductor-Inductor-Transformer) transformer design process and experimentation results for PDP TV power supply is presented. LLT transformer used to combine the inductor and transformer into one unit has the increased leakage inductance in the primary and secondary due to the winding method and the use of the gaped core. The increased leakage inductance in the primary and secondary of LLT transformer can be impacted on the DC voltage gain characteristics of LLC series resonant converter, In this paper, DC gain characteristics and the experimental results of the LLC series resonant converter with a LLT transformer are verified on the Math-CAD simulation based on the theoretical analysis and the 600W experimental prototype.

A Study on the Analysis of Internal Power Loss Including Leakage Inductance of Power Transformer for DAB Converter (DAB 컨버터용 전력 변압기의 누설 인덕턴스를 포함한 내부 전력 손실 분석에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young;Gil, Yong Man
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.95-100
    • /
    • 2022
  • In this paper, a power loss analysis technique of a high-frequency transformer of a bidirectional DAB (Dual Active Bridge) converter is reported. To miniaturize the transformer of the dual active bridge converter, a resonant inductor was designed with an air gap included low-coupled rate state core to combine leakage inductor with the resonant inductor which is required for soft-switching. In this paper, leakage inductance and magnetizing inductance, core material, type of winding and winding method are included in the dual active bridge transformer loss analysis process to enable optimal design at the initial design stage. Transformer loss analysis for dual active bridge with a switching frequency of 200 kHz and maximum output of 5 kW was executed, and elements necessary for design based on the number of turns on the primary side were graphed while maintaining the transformer turns ratio and window area. In particular, it was possible to determine the optimal number of turns and thickness of the transformer, and ultimately, the total loss of the transformer could be estimated.

A Flyback Transformer linked Soft Switching PWM DC-DC Power Converter using Trapped Energy Recovery Passive Quasi-Resonant Snubbers with an Auxiliary Three-Winding Transformer

  • Ahmed Tarek;Chandhaket Srawouth;Nakaoka Mutsuo;Jung Song Hwa;Lee Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.237-245
    • /
    • 2004
  • In this paper, a two-switch high frequency flyback transformer linked zero voltage soft switching PWM DC-DC power converter implemented for distributed DC- feeding power conditioning supplies is proposed and discussed. This switch mode power converter circuit is mainly based on two main active power semiconductor switches and a main flyback high frequency transformer linked DC-DC converter in which, two passive lossless quasi-resonant snubbers with pulse current regeneration loops for energy recovery to the DC supply voltages composed of a three winding auxiliary high frequency pulse transformer, auxiliary capacitors and auxiliary diodes for inductive energy recovery discharge blocking due to snubber capacitors are introduced to achieve zero voltage soft switching from light to full load conditions. It is clarified that the passive resonant snubber-assisted soft switching PWM DC-DC power converter has some advantages such as simple circuit configuration, low cost, simple control scheme, high efficiency and lowered noises due to the soft switching commutation. Its operating principle is also described using each mode equivalent circuit. To determine the optimum resonant snubber circuit parameters, some practical design considerations are discussed and evaluated in this paper. Moreover, through experimentation the practical effectiveness of the proposed soft switching PWM DC-DC power converter using IGBTs is evaluated and compared with a hard switching PWM DC-DC power converter.