• Title/Summary/Keyword: Convergence order

Search Result 6,648, Processing Time 0.029 seconds

DOUBLE WIJSMAN LACUNARY STATISTICAL CONVERGENCE OF ORDER 𝛼

  • GULLE, ESRA;ULUSU, UGUR
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.303-319
    • /
    • 2021
  • In this paper, we introduce the concepts of Wijsman strongly p-lacunary summability of order 𝛼, Wijsman lacunary statistical convergence of order 𝛼 and Hausdorff lacunary statistical convergence of order 𝛼 for double set sequences. Also, we investigate some properties of these new concepts and examine the existence of some relationships between them. Furthermore, we study the relationships between these new concepts and some concepts in the literature.

STUDY OF OPTIMAL EIGHTH ORDER WEIGHTED-NEWTON METHODS IN BANACH SPACES

  • Argyros, Ioannis K.;Kumar, Deepak;Sharma, Janak Raj
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.677-693
    • /
    • 2018
  • In this work, we generalize a family of optimal eighth order weighted-Newton methods to Banach spaces and study its local convergence to approximate a locally-unique solution of a system of nonlinear equations. The convergence in this study is shown under hypotheses only on the first derivative. Our analysis avoids the usual Taylor expansions requiring higher order derivatives but uses generalized Lipschitz-type conditions only on the first derivative. Moreover, our new approach provides computable radius of convergence as well as error bounds on the distances involved and estimates on the uniqueness of the solution based on some functions appearing in these generalized conditions. Such estimates are not provided in the approaches using Taylor expansions of higher order derivatives which may not exist or may be very expensive or impossible to compute. The convergence order is computed using computational order of convergence or approximate computational order of convergence which do not require usage of higher derivatives. This technique can be applied to any iterative method using Taylor expansions involving high order derivatives. The study of the local convergence based on Lipschitz constants is important because it provides the degree of difficulty for choosing initial points. In this sense the applicability of the method is expanded. Finally, numerical examples are provided to verify the theoretical results and to show the convergence behavior.

DEFERRED INVARIANT STATISTICAL CONVERGENCE OF ORDER 𝜂 FOR SET SEQUENCES

  • Gulle, Esra
    • Honam Mathematical Journal
    • /
    • v.44 no.1
    • /
    • pp.110-120
    • /
    • 2022
  • In this paper, we introduce the concepts of Wijsman invariant statistical, Wijsman deferred invariant statistical and Wijsman strongly deferred invariant convergence of order 𝜂 (0 < 𝜂 ≤ 1) for set sequences. Also, we investigate some properties of these concepts and some relationships between them.

SECOND ORDER REGULAR VARIATION AND ITS APPLICATIONS TO RATES OF CONVERGENCE IN EXTREME-VALUE DISTRIBUTION

  • Lin, Fuming;Peng, Zuoxiang;Nadarajah, Saralees
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.75-93
    • /
    • 2008
  • The rate of convergence of the distribution of order statistics to the corresponding extreme-value distribution may be characterized by the uniform and total variation metrics. de Haan and Resnick [4] derived the convergence rate when the second order generalized regularly varying function has second order derivatives. In this paper, based on the properties of the generalized regular variation and the second order generalized variation and characterized by uniform and total variation metrics, the convergence rates of the distribution of the largest order statistic are obtained under weaker conditions.

A FOURTH-ORDER FAMILY OF TRIPARAMETRIC EXTENSIONS OF JARRATT'S METHOD

  • Kim, Young Ik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.579-587
    • /
    • 2012
  • A fourth-order family of triparametric extensions of Jarratt's method are proposed in this paper to find a simple root of nonlinear algebraic equations. Convergence analysis including numerical experiments for various test functions apparently verifies the fourth-order convergence and asymptotic error constants.

A QUADRAPARAMETRIC FAMILY OF EIGHTH-ORDER ROOT-FINDING METHODS

  • Kim, Young Ik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.133-143
    • /
    • 2014
  • A new three-step quadraparametric family of eighth-order iterative methods free from second derivatives are proposed in this paper to find a simple root of a nonlinear equation. Convergence analysis as well as numerical experiments confirms the eighth-order convergence and asymptotic error constants.

ON THE ORDER AND RATE OF CONVERGENCE FOR PSEUDO-SECANT-NEWTON'S METHOD LOCATING A SIMPLE REAL ZERO

  • Kim, Young Ik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.133-139
    • /
    • 2006
  • By combining the classical Newton's method with the pseudo-secant method, pseudo-secant-Newton's method is constructed and its order and rate of convergence are investigated. Given a function $f:\mathbb{R}{\rightarrow}\mathbb{R}$ that has a simple real zero ${\alpha}$ and is sufficiently smooth in a small neighborhood of ${\alpha}$, the convergence behavior is analyzed near ${\alpha}$ for pseudo-secant-Newton's method. The order of convergence is shown to be cubic and the rate of convergence is proven to be $\(\frac{f^{{\prime}{\prime}}(\alpha)}{2f^{\prime}(\alpha)}\)^2$. Numerical experiments show the validity of the theory presented here and are confirmed via high-precision programming in Mathematica.

  • PDF

IMPROVING THE ORDER AND RATES OF CONVERGENCE FOR THE SUPER-HALLEY METHOD IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.507-516
    • /
    • 1998
  • In this study we are concerned with the problem of ap-proximating a locally unique solution of an equation on a Banach space. A semilocal convergence theorem is given for the Super-Halley method in Banach spaces. Earlier results have shown that the order of convergence is four for a certain class of operators [4] [5] [8] These results were not given in affine invariant form and made use of a real quadratic majorizing polynomial. Here we provide our re-sults in affine invariant form showing that the order of convergence is at least four. In cases that it is exactly four the rate of convergence is improved. We achieve these results by using a cubic majorizing polynomial. Some numerical examples are given to show that our error bounds are better than earlier ones.

On the Design of a Finite Time Reduced Order Observer (유한시간 감소차수 관측자의 설계)

  • Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.961-965
    • /
    • 2010
  • A reduced order observer with finite time convergence characteristics is proposed for linear time invariant systems. The proposed finite time reduced order observer(FTROO) is a dual observer scheme in which two reduced order Luenberger observers with asymptotic convergence characteristics and a finite time delay element are employed. The FTROO can be constructed so as to converge in the designer specified finite time independent of the eigenvalues of the reduced order observers. A numerical example is given to show the finite-time convergence characteristics of the proposed FTROO.

A REVIEW OF THE SUPRA-CONVERGENCES OF SHORTLEY-WELLER METHOD FOR POISSON EQUATION

  • Yoon, Gangjoon;Min, Chohong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.51-60
    • /
    • 2014
  • The Shortley-Weller method is a basic finite difference method for solving the Poisson equation with Dirichlet boundary condition. In this article, we review the analysis for supra-convergence of the Shortley-Weller method. Though consistency error is first order accurate at some locations, the convergence order is globally second order. We call this increase of the order of accuracy, supra-convergence. Our review is not a simple copy but serves a basic foundation to go toward yet undiscovered analysis for another supra-convergence: we present a partial result for supra-convergence for the gradient of solution.