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DOUBLE WIJSMAN LACUNARY STATISTICAL
CONVERGENCE OF ORDER α
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Abstract. In this paper, we introduce the concepts of Wijsman strongly
p-lacunary summability of order α, Wijsman lacunary statistical conver-
gence of order α and Hausdorff lacunary statistical convergence of order α
for double set sequences. Also, we investigate some properties of these new
concepts and examine the existence of some relationships between them.
Furthermore, we study the relationships between these new concepts and
some concepts in the literature.
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1. Introduction

The concept of statistical convergence was introduced by Fast [13] and Stein-
haus [34], and later reintroduced by Schoenberg [32], independently. Then,
this concept has been developmend by many researchers until recently (see,
[5, 7, 8, 15, 17, 27, 35, 40]).

In [14], Freedman et al. established the connection between the strongly
Cesàro summable sequences space |σ1| and the strongly lacunary summable se-
quences space Nθ defined by a lacunary sequence θ. Then, using lacunary se-
quence concept, Fridy and Orhan [16] defined the concept of lacunary statistical
convergence. Recently, the concepts of lacunary statistical convergence of order
α and strongly p-lacunary summability of order α were studied by Şengül and
Et [36]. For more detail, see [12].

In [26], Pringsheim introduced the concept of convergence for double se-
quences. Then, Mursaleen and Edely [19] extended this concept to statisti-
cal convergence. Also, using double lacunary sequence concept, the concept of
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lacunary statistical convergence was studied by Patterson and Savaş [25]. Re-
cently, Çolak and Altın [9] defined the concept of statistical convergence of or-
der α for double sequences. Also, the concepts of almost statistical and almost
lacunary statistical convergence of order α for double sequences were studied
by Savaş [29, 30]. More developments on double sequences can be found in
[4, 6, 10, 11, 18, 20, 28, 39].

The concepts of convergence for number sequences were transferred to the
concepts of convergence for set sequences by many authors. The concepts of
Wijsman convergence and Hausdorff convergence are two of these transfers (see,
[1, 2, 3, 43]). Nuray and Rhoades [21] extended the concepts of Wijsman con-
vergence and Hausdorff convergence to statistical convergence for set sequences
and gave some basic theorems. Then, using lacunary sequence concept, the
concept of lacunary statistical convergence for set sequences was introduced by
Ulusu and Nuray [41]. Recently, using ideal concept, the concept of Wijsman
I-lacunary statistical convergence of order α was studied by both Savaş [31] and
Şengül and Et [37], independently.

In [22, 23, 24], Nuray et al. introduced the concepts of Wijsman strongly
Cesàro summability, Wijsman statistical convergence, Wijsman strongly lacu-
nary summability and Wijsman lacunary statistical convergence for double set
sequences. Then, the concept of Hausdorff statistical convergence for double set
sequences was studied by Talo et al. [38].

Lately, the concepts of Wijsman strongly p-Cesàro summability of order α,
Wijsman statistical convergence of order α and Hausdorff statistical convergence
of order α for double set sequences were studied by Ulusu and Gülle [42].

2. Definitions and Notations

Firstly, we recall the basic concepts that need for a good understanding of
our study (see, [1, 2, 22, 23, 24, 26, 28, 33, 38, 42]).

A double sequence (xij) is said to be convergent to L in Pringsheim’s sense if
for every ε > 0, there exists Nε ∈ N such that |xij −L| < ε, whenever i, j > Nε.

Let X be any non-empty set. The function f : N → P (X) is defined by
f(i) = Ui ∈ P (X) for each i ∈ N, where P (X) is power set of X. The sequence
{Ui} = {U1, U2, ...}, which is the range’s elements of f , is said to be set sequences.

Let (X, d) be a metric space. For any point x ∈ X and any non-empty subset
U of X, the distance from x to U is defined by

ρ(x, U) = inf
u∈U

d(x, u).

Throughout the study, (X, d) will be taken as a metric space and U,Uij be
any non-empty closed subsets of X.

A double sequence {Uij} is said to be Wijsman convergent to U if for each
x ∈ X,

lim
i,j→∞

ρ(x, Uij) = ρ(x, U).
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A double sequence {Uij} is said to be Hausdorff convergent to U if
lim

i,j→∞
sup
x∈X
|ρ(x, Uij)− ρ(x, U)| = 0.

A double sequence {Uij} is said to be Wijsman statistical convergent to U if
for every ε > 0 and each x ∈ X,

lim
m,n→∞

1

mn

∣∣∣{(i, j) : i ≤ n, j ≤ m, |ρ(x, Uij)− ρ(x, U)| ≥ ε
}∣∣∣ = 0.

The class of all Wijsman statistical convergent sequences denotes by simply
W (S2).

A double sequence {Uij} is said to be Hausdorff statistical convergent to U if
for every ε > 0,

lim
m,n→∞

1

mn

∣∣∣{(i, j) : i ≤ n, j ≤ m, sup
x∈X
|ρ(x, Uij)− ρ(x, U)| ≥ ε

}∣∣∣ = 0.

A double sequence θ2 = {(kr, ju)} is called double lacunary sequence if there
exist two increasing sequence of integers such that
k0 = 0, hr = kr − kr−1 →∞ and j0 = 0, h̄u = ju − ju−1 →∞ as r, u→∞.

We use the following notations in the sequel:
kru = krju, hru = hrh̄u, Iru = {(i, j) : kr−1 < i ≤ kr and ju−1 < j ≤ ju},

qr =
kr
kr−1

and qu =
ju
ju−1

.

Throughout the study, θ2 = {(kr, ju)} will be taken as a double lacunary
sequence.

A double sequence {Uij} is said to be Wijsman lacunary convergent to U if
for each x ∈ X,

lim
r,u→∞

1

hru

∑
(i,j)∈Iru

ρ(x, Uij) = ρ(x, U).

Let 0 < p < ∞. A double sequence {Uij} is said to be Wijsman strongly
p-lacunary convergent to U if for each x ∈ X,

lim
r,u→∞

1

hru

∑
(i,j)∈Iru

|ρ(x, Uij)− ρ(x, U)|p = 0.

The class of all Wijsman strongly p-lacunary convergent sequences denotes
by simply [W2Nθ]

p.
A double sequence {Uij} is said to be Wijsman lacunary statistically conver-

gent to U if for every ε > 0 and each x ∈ X,

lim
r,u→∞

1

hru

∣∣∣{(i, j) ∈ Iru : |ρ(x, Uij)− ρ(x, U)| ≥ ε
}∣∣∣ = 0.

The class of all Wijsman lacunary statistically convergent sequences denotes
by simply W2Sθ.
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Let 0 < α ≤ 1. A double sequence {Uij} is said to be Wijsman strongly
Cesàro summable of order α to U or W [Cα

2 ]-summable to U if for each x ∈ X,

lim
m,n→∞

1

(mn)α

m,n∑
i,j=1,1

|ρ(x, Uij)− ρ(x, U)| = 0.

The class of all W [Cα
2 ]-summable sequences denotes by simply W [Cα

2 ].
Let 0 < α ≤ 1. A double sequence {Uij} is said to be Wijsman statistically

convergent of order α to U or W (Sα
2 )-convergent to U if for every ε > 0 and

each x ∈ X,

lim
m,n→∞

1

(mn)α

∣∣∣{(i, j) : i ≤ m, j ≤ n, |ρ(x, Uij)− ρ(x, U)| ≥ ε
}∣∣∣ = 0.

The class of all W (Sα
2 )-convergent sequences denotes by simply W (Sα

2 ).

From now on, for short, we use ρx(U) and ρx(Uij) instead of ρ(x, U) and
ρ(x, Uij), respectively.

3. New Concepts

In this section, we introduce the concepts of Wijsman strongly p-lacunary
summability of order α, Wijsman lacunary statistical convergence of order α and
Hausdorff lacunary statistical convergence of order α for double set sequences.

Definition 3.1. Let 0 < α ≤ 1. A double sequence {Uij} is Wijsman lacunary
summable of order α to U or W2N

α
θ -summable to U if for each x ∈ X,

lim
r,u→∞

1

hαru

∑
(i,j)∈Iru

ρx(Uij) = ρx(U).

In this case, we write Uij
W2N

α
θ−→ U or Uij −→ U

(
W2N

α
θ

)
.

Definition 3.2. Let 0 < α ≤ 1. A double sequence {Uij} is Wijsman strongly
p-lacunary summable of order α to U or [W2N

α
θ ]

p-summable to U if for each
x ∈ X,

lim
r,u→∞

1

hαru

∑
(i,j)∈Iru

|ρx(Uij)− ρx(U)|p = 0.

In this case, we write Uij
[W2N

α
θ ]p−→ U or Uij −→ U

(
[W2N

α
θ ]

p
)
. If p = 1, then the

double sequence {Uij} is simply said to be Wijsman strongly lacunary summable
of order α to U and we write Uij

[W2N
α
θ ]−→ U or Uij −→ U

(
[W2N

α
θ ]
)
.

The class of all [W2N
α
θ ]

p-summable sequences will be denoted by simply
[W2N

α
θ ]

p.
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Example 3.3. Let X = R2 and a double sequence {Uij} be defined as following:

Uij :=


{
(x, y) : (x− 1)2 + y2 = 1

ij

}
; if (i, j) ∈ Iru, i and j are

square integers
{(0, 1)} ; otherwise.

Then, the double sequence {Uij} is Wijsman strongly lacunary summable of
order α to the set U = {(0, 1)}.
Remark 3.1. For α = 1, the concepts of W2N

α
θ -summability and [W2N

α
θ ]

p-
summability coincide with the concepts of Wijsman lacunary convergence and
Wijsman strongly p-lacunary convergence for double set sequences in [22], re-
spectively.
Definition 3.4. Let 0 < α ≤ 1. A double sequence {Uij} is Wijsman lacunary
statistically convergent of order α to U or W2S

α
θ -convergent to U if for every

ε > 0 and each x ∈ X,

lim
r,u→∞

1

hαru

∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣ = 0.

In this case, we write Uij
W2S

α
θ−→ U or Uij −→ U

(
W2S

α
θ

)
.

The class of all W2S
α
θ -convergent sequences will be denoted by simply W2S

α
θ .

Example 3.5. Let X = R2 and a double sequence {Uij} be defined as following:

Uij :=


{
(x, y) : (x+ i)2 + (y − j)2 = 1

}
; if (i, j) ∈ Iru, i and j are

square integers
{(1,−1)} ; otherwise.

Then, the double sequence {Uij} is Wijsman lacunary statistically convergent
of order α to the set U = {(1,−1)}.
Remark 3.2. For α = 1, the concept of W2S

α
θ -convergence coincides with the

concept of Wijsman lacunary statistical convergence for double set sequences in
[23].
Definition 3.6. Let 0 < α ≤ 1. A double sequence {Uij} is Hausdorff lacunary
statistically convergent of order α to U or H2(S

α
θ )-convergent to U if for every

ε > 0,

lim
r,u→∞

1

hαru

∣∣∣{(i, j) ∈ Iru : sup
x∈X
|ρx(Uij)− ρx(U)| ≥ ε

}∣∣∣ = 0.

In this case, we write Uij
H2(S

α
θ )−→ U or Uij −→ U

(
H2(S

α
θ )
)
.

The class of all H2(S
α
θ )-convergent sequences will be denoted by simply

H2(S
α
θ ).

Remark 3.3. For α = 1, the concept of H2(S
α
θ )-convergence coincides with the

concept of Hausdorff lacunary statistical convergence for double set sequences,
which has not been studied till now.
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4. Inclusion Theorems

In this section, firstly, we investigate some properties of the new concepts
that we introduced in Section 3 and examine the existence of some relationships
between them.

Theorem 4.1. If 0 < α ≤ β ≤ 1, then [W2N
α
θ ]

p ⊆ [W2N
β
θ ]

p for every double
lacunary sequence θ2 = {(kr, ju)}.

Proof. Let 0 < α ≤ β ≤ 1 and suppose that Uij
[W2N

α
θ ]p−→ U . For each x ∈ X, we

have
1

hβru

∑
(i,j)∈Iru

|ρx(Uij)− ρx(U)|p ≤ 1

hαru

∑
(i,j)∈Iru

|ρx(Uij)− ρx(U)|p.

Hence, by our assumption, we get Uij
[W2N

β
θ ]p

−→ U . Consequently, [W2N
α
θ ]

p ⊆
[W2N

β
θ ]

p. �

If we take β = 1 in Theorem 4.1, then we obtain the following corollary.

Corollary 4.2. If a double sequence {Uij} is Wijsman strongly p-lacunary sum-
mable of order α to U for some 0 < α ≤ 1, then the double sequence is Wijsman
strongly p-lacunary summable to U , i.e., [W2N

α
θ ]

p ⊆ [W2Nθ]
p.

Now, without proof, we shall state a theorem that gives a relation between
[W2N

α
θ ]

p and [W2N
α
θ ]

q, where 0 < α ≤ 1 and 0 < p < q <∞.

Theorem 4.3. Let 0 < α ≤ 1 and 0 < p < q <∞. Then, [W2N
α
θ ]

q ⊂ [W2N
α
θ ]

p

for every double lacunary sequence θ2 = {(kr, ju)}.

Theorem 4.4. If 0 < α ≤ β ≤ 1, then W2S
α
θ ⊆W2S

β
θ for every double lacunary

sequence θ2 = {(kr, ju)}.

Proof. Let 0 < α ≤ β ≤ 1 and suppose that Uij
W2S

α
θ−→ U . For every ε > 0 and

each x ∈ X, we have
1

hβru

∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣

≤ 1

hαru

∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣.

Hence, by our assumption, we get Uij
W2S

β
θ−→ U . Consequently, W2S

α
θ ⊆ W2S

β
θ .
�

If we take β = 1 in Theorem 4.4, then we obtain the following corollary.

Corollary 4.5. If a double sequence {Uij} is Wijsman lacunary statistically
convergent of order α to U for some 0 < α ≤ 1, then the double sequence is
Wijsman lacunary statistically convergent to U , i.e., W2S

α
θ ⊆W2Sθ.
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Theorem 4.6. Let 0 < α ≤ β ≤ 1 and 0 < p <∞. If a double sequence {Uij} is
Wijsman strongly p-lacunary summable of order α to U , then the double sequence
is Wijsman lacunary statistically convergent of order β to U .

Proof. Let 0 < α ≤ β ≤ 1 and we suppose that the double sequence {Uij} is
Wijsman strongly p-lacunary summable of order α to U . For every ε > 0 and
each x ∈ X, we have∑

(i,j)∈Iru

|ρx(Uij)− ρx(U)|p =
∑

(i,j)∈Iru
|ρx(Uij)−ρx(U)|≥ε

|ρx(Uij)− ρx(U)|p

+
∑

(i,j)∈Iru
|ρx(Uij)−ρx(U)|<ε

|ρx(Uij)− ρx(U)|p

≥
∑

(i,j)∈Iru
|ρx(Uij)−ρx(U)|≥ε

|ρx(Uij)− ρx(U)|p

≥ εp
∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε

}∣∣∣
and so
1

hαru

∑
(i,j)∈Iru

|ρx(Uij)− ρx(U)|p ≥ εp

hαru

∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣

≥ εp

hβru

∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣.

Hence, by our assumption, we get that the double sequence {Uij} is Wijsman
lacunary statistically convergent of order β to U . �

If we take β = α in Theorem 4.6, then we obtain the following corollary.

Corollary 4.7. Let 0 < α ≤ 1 and 0 < p < ∞. If a double sequence {Uij} is
Wijsman strongly p-lacunary summable of order α to U , then the double sequence
is Wijsman lacunary statistically convergent of order α to U .

Theorem 4.8. If 0 < α ≤ β ≤ 1, then H2(S
α
θ ) ⊆ H2(S

β
θ ) for every double

lacunary sequence θ2 = {(kr, ju)}.

Proof. Let 0 < α ≤ β ≤ 1 and suppose that Uij
H2(S

α
θ )−→ U . For every ε > 0, we

have
1

hβru

∣∣∣{(i, j) ∈ Iru : sup
x∈X
|ρx(Uij)− ρx(U)| ≥ ε

}∣∣∣
≤ 1

hαru

∣∣∣{(i, j) ∈ Iru : sup
x∈X
|ρx(Uij)− ρx(U)| ≥ ε

}∣∣∣.
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Hence, by our assumption, we get Uij
H2(S

β
θ )

−→ U . Consequently, H2(S
α
θ ) ⊆

H2(S
β
θ ). �

If we take β = 1 in Theorem 4.8, then we obtain the following corollary.

Corollary 4.9. If a double sequence {Uij} is Hausdorff lacunary statistically
convergent of order α to U for some 0 < α ≤ 1, then the double sequence is
Hausdorff lacunary statistically convergent to U .

Theorem 4.10. Let 0 < α ≤ β ≤ 1. If a double sequence {Uij} is Hausdorff
lacunary statistically convergent of order α to U , then the double sequence is
Wijsman lacunary statistically convergent of order β to U .

Proof. Let 0 < α ≤ β ≤ 1 and suppose that the double sequence {Uij} is
Hausdorff lacunary statistically convergent of order α to U . For every ε > 0 and
each x ∈ X, we have

1

hβru

∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣

≤ 1

hβru

∣∣∣{(i, j) ∈ Iru : sup
x∈X
|ρx(Uij)− ρx(U)| ≥ ε

}∣∣∣
≤ 1

hαru

∣∣∣{(i, j) ∈ Iru : sup
x∈X
|ρx(Uij)− ρx(U)| ≥ ε

}∣∣∣.
Hence, by our assumption, we get that the double sequence {Uij} is Wijsman
lacunary statistically convergent of order β to U . �

If we take β = α in Theorem 4.10, then we obtain the following corollary.

Corollary 4.11. Let 0 < α ≤ 1. If a double sequence {Uij} is Hausdorff
lacunary statistically convergent of order α to U , then the double sequence is
Wijsman lacunary statistically convergent of order α to U .

Now, secondly, we study the relationships between the new concepts that we
introduced in Section 3 and some concepts in the literature.

Theorem 4.12. Let 0 < α ≤ 1. If lim infr q
α
r > 1 and lim infu q

α
u > 1 for any

double lacunary sequence θ2 = {(kr, ju)}, then W [Cα
2 ] ⊆ [W2N

α
θ ].

Proof. Let 0 < α ≤ 1 and suppose that lim infr q
α
r > 1 and lim infu q

α
u > 1.

Then, there exist η > 0 and µ > 0 such that qαr ≥ 1 + η and qαu ≥ 1 + µ for all r
and u, which implies that

kαru
hαru
≤ (1 + η)(1 + µ)

ηµ
and

kα(r−1)(u−1)

hαru
≤ 1

ηµ
.
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For each x ∈ X, we can write
1

hαru

∑
(i,j)∈Iru

|ρx(Uij)− ρx(U)|

=
1

hαru

kr,ju∑
m,n=1,1

|ρx(Umn)− ρx(U)|

− 1

hαru

kr−1,ju−1∑
m,n=1,1

|ρx(Umn)− ρx(U)|

=
kαru
hαru

(
1

kαru

kr,ju∑
m,n=1,1

|ρx(Umn)− ρx(U)|

)

−
kα(r−1)(u−1)

hαru

(
1

kα(r−1)(u−1)

kr−1,ju−1∑
m,n=1,1

|ρx(Umn)− ρx(U)|

)
.

If Uij
W [Cα

2 ]−→ U , then for each x ∈ X

1

kα
ru

kr,ju∑
m,n=1,1

|ρx(Umn)− ρx(U)| → 0 and 1

kα
(r−1)(u−1)

kr−1,ju−1∑
m,n=1,1

|ρx(Umn)− ρx(U)| → 0.

Thus, when the above equality is considered, for each x ∈ X we get
1

hαru

∑
(i,j)∈Iru

|ρx(Uij)− ρx(U)| → 0,

that is, Uij
[W2N

α
θ ]−→ U . Consequently, W [Cα

2 ] ⊆ [W2N
α
θ ]. �

Theorem 4.13. Let 0 < α ≤ 1. If lim supr qr < ∞ and lim supu qu < ∞ for
any double lacunary sequence θ2 = {(kr, ju)}, then [W2N

α
θ ] ⊆W [Cα

2 ].

Proof. Let 0 < α ≤ 1 and suppose that lim supr qr < ∞ and lim supu qu < ∞.
Then, there exist M,N > 0 such that qr < M and qu < N for all r and u. Let
Uij

[W2N
α
θ ]−→ U and ε > 0 be given. Then, for each x ∈ X we can find R,U > 0

and H > 0 such that
sup

i≥R,j≥U
τij < ε and τij < H for all i, j = 1, 2, . . .

where

τru =
1

hαru

∑
(i,j)∈Iru

|ρx(Uij)− ρx(U)|.

If m and n are any integers satisfying kr−1 < m ≤ kr and ju−1 < n ≤ ju where
r > R and u > U , then for each x ∈ X we can write
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1

(mn)α

m,n∑
i,j=1,1

|ρx(Uij)− ρx(U)|

≤ 1

kα(r−1)(u−1)

kr,ju∑
i,j=1,1

|ρx(Uij)− ρx(U)|

=
1

kα(r−1)(u−1)

(∑
I11

|ρx(Uij)− ρx(U)|

+
∑
I12

|ρx(Uij)− ρx(U)|+
∑
I21

|ρx(Uij)− ρx(U)|

+
∑
I22

|ρx(Uij)− ρx(U)|

+ · · ·+
∑
Iru

|ρx(Uij)− ρx(U)|

)

=
hα11

kα(r−1)(u−1)

τ11 +
hα12

kα(r−1)(u−1)

τ12 +
hα21

kα(r−1)(u−1)

τ21

+
hα22

kα(r−1)(u−1)

τ22 + · · ·+
hαru

kα(r−1)(u−1)

τru

≤
R,U∑

i,j=1,1

hij
k(r−1)(u−1)

τij +

r,u∑
i,j=R+1,U+1

hij
k(r−1)(u−1)

τij

≤

(
sup

i≥1,j≥1
τij

)
kRU

k(r−1)(u−1)

+

(
sup

i≥R,j≥U
τij

)
(kr − kR)(ju − jU )

k(r−1)(u−1)

≤ H kRU

k(r−1)(u−1)
+ εM N.

Since kr−1, ju−1 →∞ as m,n→∞, it follows that for each x ∈ X

1

(mn)α

m,n∑
i,j=1,1

|ρx(Uij)− ρx(U)| → 0.

Thus, Uij
W [Cα

2 ]−→ U . Consequently, [W2N
α
θ ] ⊆W [Cα

2 ]. �
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Theorem 4.14. Let 0 < α ≤ 1. For any double lacunary sequence θ2 =
{(kr, ju)}, if

1 < lim inf
r

qαr ≤ lim sup
r

qr <∞ and 1 < lim inf
u

qαu ≤ lim sup
u

qu <∞,

then [W2N
α
θ ] =W [Cα

2 ].

Proof. This can be obtained from Theorem 4.12 and Theorem 4.13, immediately.
�

Theorem 4.15. Let 0 < α ≤ 1. If Uij
[W2N

α
θ ]−→ U and Uij

W [Cα
2 ]−→ V , where

{Uij} ∈ [W2N
α
θ ]∩W [Cα

2 ] for any double lacunary sequence θ2 = {(kr, ju)}, then
U = V .

Proof. Let 0 < α ≤ 1, {Uij} ∈ [W2N
α
θ ]∩W [Cα

2 ], Uij
[W2N

α
θ ]−→ U and Uij

W [Cα
2 ]−→ V .

Also, we suppose that U ̸= V . For each x ∈ X, we have

υru + τru =
1

hαru

∑
(i,j)∈Iru

|ρx(Uij)− ρx(U)|+ 1

hαru

∑
(i,j)∈Iru

|ρx(Uij)− ρx(V )|

≥ 1

hαru

∑
(i,j)∈Iru

|ρx(U)− ρx(V )|

=
hru
hαru
|ρx(U)− ρx(V )|

≥ |ρx(U)− ρx(V )|,
where

υru =
1

hαru

∑
(i,j)∈Iru

|ρx(Uij)− ρx(U)| and τru =
1

hαru

∑
(i,j)∈Iru

|ρx(Uij)− ρx(V )|.

Since Uij
[W2N

α
θ ]−→ U , then υru → 0 for each x ∈ X. Thus, for each x ∈ X and

sufficiently large r and u, we must have

τru >
1

2
|ρx(U)− ρx(V )|.

Observe that for each x ∈ X and sufficiently large r and u

1

kαru

kr,ju∑
m,n=1,1

|ρx(Umn)− ρx(V )| ≥ 1

kαru

∑
(m,n)∈Iru

|ρx(Umn)− ρx(V )|

=
hαru
kαru

τru

=

(
1− 1

qr

)α(
1− 1

qu

)α

τru

>
1

2

(
1− 1

qr

)α(
1− 1

qu

)α

|ρx(U)− ρx(V )|.
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Since Uij
W [Cα

2 ]−→ V , for each x ∈ X the left side of the above inequality convergent
to 0. Hence, we have qr → 1 and qu → 1, and by Theorem 4.13 this implies that

[W2N
α
θ ] ⊆W [Cα

2 ],

i.e.,

Uij
[W2N

α
θ ]−→ U ⇒ Uij

W [Cα
2 ]−→ U

and therefore for each x ∈ X, we can write
1

(mn)α

m,n∑
i,j=1,1

|ρx(Uij)− ρx(U)| → 0.

For each x ∈ X, we have
1

(mn)α

m,n∑
i,j=1,1

|ρx(Uij)− ρx(U)|+ 1

(mn)α

m,n∑
i,j=1,1

|ρx(Uij)− ρx(V )|

≥ mn

(mn)α
|ρx(U)− ρx(V )| > 0.

Since both terms on the left side of the above inequality convergent to 0, then
for each x ∈ X we get

|ρx(U)− ρx(V )| = 0.

This situation causes a contradiction to our assumption. Consequently, we get
U = V . �
Theorem 4.16. Let 0 < α ≤ 1. If lim infr q

α
r > 1 and lim infu q

α
u > 1 for

any double lacunary sequence θ2 = {(kr, ju)}, then Uij
W (Sα

2 )−→ U implies that
Uij

W2S
α
θ−→ U .

Proof. Let 0 < α ≤ 1 and suppose that lim infr q
α
r > 1 and lim infu q

α
u > 1.

Then, there exists η, µ > 0 such that qαr ≥ 1 + η and qαu ≥ 1 + µ for all r and u,
which implies that

hαru
kαru
≥ ηµ

(1 + η)(1 + µ)
.

For every ε > 0 and each x ∈ X, we can write
1

kαru

∣∣∣{(i, j) : i ≤ kr, j ≤ ju, |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣

≥ 1

kαru

∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣

=
hαru
kαru

1

hαru

∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣

≥ ηµ

(1 + η)(1 + µ)

1

hαru

∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣.



Double Wijsman Lacunary Statistical Convergence of Order α 315

If Uij
W (Sα

2 )−→ U , then for each x ∈ X the term on the left side of the above
inequality convergent to 0 and this implies that

1

hαru

∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣→ 0.

Thus, we get Uij
W2S

α
θ−→ U . �

Theorem 4.17. Let 0 < α ≤ 1. If lim supr qr < ∞ and lim supu qu < ∞ for
any double lacunary sequence θ2 = {(kr, ju)}, then Uij

W2S
α
θ−→ U implies that

Uij
W (Sα

2 )−→ U .

Proof. Let 0 < α ≤ 1 and suppose that lim supr qr < ∞ and lim supu qu < ∞.
Then, there exist M,N > 0 such that qr < M and qu < N for all r and u. Let
Uij

W2S
α
θ−→ U and ε > 0 be given, and let

Tru :=
∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε

}∣∣.
Then, there exist r0, u0 ∈ N such that for every ε > 0, each x ∈ X and all
r ≥ r0, u ≥ u0

Tru
hαru

< ε.

Now, let
H := max{Tru : 1 ≤ r ≤ r0, 1 ≤ u ≤ u0},

and let m and n be any integers satisfying kr−1 < m ≤ kr and ju−1 < n ≤ ju.
Then, for each x ∈ X we can write

1

(mn)α

∣∣∣{(i, j) : i ≤ m, j ≤ n, |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣

≤ 1

kα(r−1)(u−1)

∣∣∣{(i, j) : i ≤ kr, j ≤ ju : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣

=
1

kα(r−1)(u−1)

{
T11 + T12 + T21 + T22 + · · ·+ Tr0u0

+ · · ·+ Tru
}

≤ r0u0
kα(r−1)(u−1)

(
max

1≤j≤u0

1≤i≤r0

{Tij}

)

+
1

kα(r−1)(u−1)

{
hαr0(u0+1)

Tr0(u0+1)

hαr0(u0+1)

+ hα(r0+1)u0

T(r0+1)u0

hα(r0+1)u0

+hα(r0+1)(u0+1)

T(r0+1)(u0+1)

hα(r0+1)(u0+1)

+ · · ·+ hαru
Tru
hαru

}
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≤ r0u0H

kα(r−1)(u−1)

+
1

kα(r−1)(u−1)

(
sup
r>r0
u>u0

Tru
hαru

)(
r,u∑

i,j≥r0,u0

hαij

)

≤ r0u0H

kα(r−1)(u−1)

+
1

k(r−1)(u−1)

(
sup
r>r0
u>u0

Tru
hαru

)(
r,u∑

i,j≥r0,u0

hij

)

≤ r0u0H

kα(r−1)(u−1)

+ ε
(kr − kr0)(ju − ju0

)

k(r−1)(u−1)

≤ r0u0H

kα(r−1)(u−1)

+ ε qr qu

≤ r0u0H

kα(r−1)(u−1)

+ εM N.

Since kr−1, ju−1 →∞ as m,n→∞, it follows that for each x ∈ X
1

(mn)α

∣∣∣{(i, j) : i ≤ m, j ≤ n : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣→ 0.

Thus, we get Uij
W (Sα

2 )−→ U . �

Theorem 4.18. Let 0 < α ≤ 1. For any double lacunary sequence θ2 =
{(kr, ju)}, if

1 < lim inf
r

qαr ≤ lim sup
r

qr <∞ and 1 < lim inf
u

qαu ≤ lim sup
u

qu <∞,

then Uij
W2S

α
θ−→ U ⇔ Uij

W (Sα
2 )−→ U .

Proof. This can be obtained from Theorem 4.16 and Theorem 4.17, immediately.
�

Theorem 4.19. Let 0 < α ≤ 1. If lim inf
r,u→∞

hαru
kru

> 0 for any double lacunary
sequence θ2 = {(kr, ju)}, then W (S2) ⊆W2S

α
θ .

Proof. For every ε > 0 and each x ∈ X, it is obvious that{
i ≤ kr, j ≤ ju, |ρx(Uij)− ρx(U)| ≥ ε

}
⊃
{
(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε

}
.

Thus, we get
1

kru

∣∣∣{(i, j) : i ≤ kr, j ≤ ju, |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣

≥ 1

kru

∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣

=
hαru
kru

1

hαru

∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣.
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If Uij
W (S2)−→ U , then for each x ∈ X the term on the left side of the above

inequality convergent to 0 and this implies that for each x ∈ X,
1

hαru

∣∣∣{(i, j) ∈ Iru : |ρx(Uij)− ρx(U)| ≥ ε
}∣∣∣→ 0.

Thus, we get Uij
W2S

α
θ−→ U . Consequently, W (S2) ⊆W2S

α
θ . �

5. Conclusions and Future Work

We introduced new convergence concepts for double set sequences, also we
studied the relationships between them. These concepts can also be studied for
the ideal convergence and invariant convergence in the future.
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