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ABSTRACT. The Shortley-Weller method is a basic finite difference method for solving the
Poisson equation with Dirichlet boundary condition. In this article, we review the analysis
for supra-convergence of the Shortley-Weller method. Though consistency error is first order
accurate at some locations, the convergence order is globally second order. We call this increase
of the order of accuracy, supra-convergence. Our review is not a simple copy but serves a basic
foundation to go toward yet undiscovered analysis for another supra-convergence: we present
a partial result for supra-convergence for the gradient of solution.

1. INTRODUCTION

The Poisson equation −∆u = f is of primal importance in many physical problems, espe-
cially in fluid flows with incompressible condition. The Navier-Stokes equations with diver-
gence free condition are the governing equations for incompressible fluid flows.

Ut + U · ∇U +
1

ρ
∇p = µ∆U

∇ · U = 0

The equations misses a time evolution for pressure variable; a state equation ∆p = −ρ
∇ · (U · ∇U), which is obtained from the divergence operation on the momentum equation,
complements the missed time evolution. Thus solving the Poisson equation is essential in the
simulation of incompressible fluid flows. The elliptic equation is coupled either with Dirichlet
boundary condition or with Neumann boundary condition. At free surface, pressure value is the
same as the default air pressure, so Dirichlet boundary condition p = pair holds. At the surface
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of container, the non-penetration condition U · n = 0 results in Neumann boundary condition
∂p
∂n = −ρ (U · ∇U) · n + ρµ (∆U) · n. There are two important aspects in the application
of Poisson solver to incompressible fluid flows. One is the ability to deal with both boundary
conditions, and the other is the accuracy of the gradient of the solution.

Shortley-Weller method [1] solves the Poisson equation with Dirichlet boundary condition
in irregular domains. It is a dimension-by-dimension approach and hence works in any dimen-
sions. It suffices to state one dimensional case; consider the stencil where grid nodes for ui and
ui−1 are located inside the domain and that for ui+1 is outside, then the method reads(

ui − ui+1

h
+

ui − uΓ
hΓ

)
2

h+ hΓ
= fi.

Here uΓ is given Dirichlet condition at the interface point between the grid nodes for ui and
ui+1. The equations for each i constitute a non-symmetric linear system whose matrix is an
M-matrix. It was proved in [1] that the numerical solution is second order accurate, and it was
numerically observed in [4] that the gradient of the solution is also second order accurate.

The work of Gibou et al. [2] also solves the Poisson equation with Dirichlet boundary
condition. It is a dimension-by-dimension approach and hence works in any dimensions. It’s
enough to state one dimensional case; in the same stencil, the method reads(

ui − ui−1

h
+

ui − uΓ
hΓ

)
1

h
= fi.

The equations for each i constitute a symmetric linear system whose matrix is an M-matrix.
It was numerically observed in [4] that the numerical solution is second order accurate and the
gradient of the solution is only first order accurate.

The work of Purvis [5, 3] solves the Poisson equation with Neumann boundary condition. It
is a finite volume approach that works in any dimensions. In the stencil, the method reads

L
i+1

2 ,j

h
uij−ui+1,j

h +
L
i− 1

2 ,j

h
uij−ui−1,j

h

+
L
i,j+1

2
h

uij−ui,j+1

h +
L
i,j− 1

2
h

uij−ui,j−1

h

= fij ,

where Li+ 1
2
,j denotes the length of the right edge of the cell and similarly defined are the other

lengths. The equations for each i constitute a symmetric linear system whose matrix is an M-
matrix. The numerical solution was numerically observed to be second order accurate in [3].
The accuracy of the numerical gradient was observed to be second order with zero Neumann
boundary condition but drops to first order with non-zero Neumann boundary condition.

We have listed three finite difference methods for Poisson equations either with Dirichlet
or with Neumann boundary condition. All of them work in any dimensions and in arbitrary
shaped domains. If the grid node for uij and its four neighboring nodes are inside the domain,
the three finite differences are the same as the standard five point finite difference method whose
consistency is second order accurate. Near the boundary, all the methods lose the second order
accuracy: the consistency of Shortley-Weller method is only first order accurate, that of Gibou
et al. is not convergent, and that of Purvis is not convergent either. See the details in [1, 2, 3, 4]
for each.
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A unique property of finite difference methods for Elliptic problems is supra-convergence.
Although consistency order varies from zero to the second, convergence order maintains two.
The second order convergence for the solution would result in first order convergence for its
gradient, however both the solution and its gradient are second order accurate in the cases of
Shortley-Weller and Purvis, but not in the case of Gibou. The phenomena were numerically
observed and most of their supporting mechanisms of the supra-convergences are still unknown
to the best knowledge of the authors. It was shown in Ciarlet [1] how the supra-convergence
for the solution occurs in Shortly-Weller method. In this article, we review the analysis with
details and introduce new findings toward the analysis for the supra-convergence of the gradient
in Shortley-Weller method.

2. SUPRA-CONVERGENCE OF SOLUTION

In this section, we review the analysis for the supra-convergence of the solution in Ciarlet
[1]. We try it not to be a simple copy but a basic foundation to start from and go toward the yet
undiscovered analysis for other supra-convergences.

Consider a uniform grid with step size h. Let the four neighboring nodes of a grid note P
inside the domain be named as P1, P2, P3, P4 and the distances to the neighbors as h1, h2,
h3, h4. Some of the neighboring nodes may be the points on the boundary, thus the distances
may be different to each other near the interface while they are all equal to h away from the
boundary. In the stencil, Shortley-Weller method reads

−∆hu (P ) =

(
2

h1h3
+

2

h2h4

)
u (P )− 2

h1 (h1 + h3)
u (P1)−

2

h3 (h1 + h3)
u (P3)

− 2

h2 (h2 + h4)
u (P2)−

2

h4 (h2 + h4)
u (P4) .

Let uh be the solution of the following discrete equation.{
−∆huh (P ) = f (P ) , P ∈ Ωh

uh (P ) = g (P ) , P ∈ Γh.

Let u (x) be the solution of the Poisson problem.{
−∆u (x) = f (x) , x ∈ Ω

u (x) = g (x) , x ∈ Γ.

• Denote by Ω∗
h the subset of points of Ωh that are adjacent to Γh, so that h1 ̸= h3 and/or

h2 ̸= h4.
• −∆h (u (P )− uh (P )) is O

(
h2
)

when P ∈ Ωh−Ω∗
h but drops to O (h) when P ∈ Ω∗

h.
• (Discrete maximum principle) If −∆hu ≥ 0 then minimum should be achieved at Γh.

Similarly, if −∆hu (P ) ≤ 0 then maximum should be achieved at Γh.
• (Discrete Green’s function) For each Q ∈ Ωh, define the function Gh (P,Q), P ∈
Ωh ∪ Γh as the solution of the discrete problem
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−∆huh (P ) =

{
0, P ̸= Q
1
h2 , P = Q

, P ∈ Ωh

uh (P ) = 0, P ∈ Γh.

Since −∆huh ≥ 0, the minimum should be achieved at Γh, and therefore Gh (P,Q) ≥ 0 for
any P ∈ Ωh ∪ Γh.

• (Summation property of Green’s function) If uh ≡ 0 on Γh,

uh (P ) =
∑
Q∈Ωh

(−∆huh (Q))Gh (P,Q)h2, ∀P ∈ Ωh ∪ Γh.

Theorem 2.1. (Bound on Green’s function)
∑

Q∈Ωh
Gh (P,Q)h2 ≤ C.

Proof. Let Uh =
∑

Q∈Ωh
Gh (P,Q)h2, then −∆hUh = 1 in Ωh and Uh = 0 on Γh. Consider

the analytic solution U (x) such that −∆U = 1 in Ω and U = 0 on Γ. Then we have 0 <
1 − c < −∆h (U) for some constant c, since −∆h (U) = 1 + O (h). Using the summation
property, noting that 1

1−cU = Uh = 0 on Γh,

Uh (P ) =
∑
Q∈Ωh

Gh (P,Q)h2

≤
∑
Q∈Ωh

(
− 1

1− c
∆hU (Q)

)
Gh (P,Q)h2

=
1

1− c
U (P ) ≤ 1

1− c
|U |∞ .

�

Theorem 2.2. (Bound on Green’s function)
∑

Q∈Ω∗
h
Gh (P,Q) ≤ 1.

Proof. Let Uh =
∑

Q∈Ω∗
h
Gh (P,Q). Since −∆hUh = 0 in Ωh − Ω∗

h, the maximum of Uh

should be attained at Ω∗
h ∪ Γh. Since Uh = 0 on Γh and Uh ≥ 0 in Ωh ∪ Γh, the maximum

should be attained at Ω∗
h. Let the maximum point be P ∗ ∈ Ω∗

h. At that point,(
2

h1h3
+ 2

h2h4

)
u (P ∗) − 2

h1 (h1 + h3)
u (P1)−

2

h3 (h1 + h3)
u (P3)

− 2

h2 (h2 + h4)
u (P2)−

2

h4 (h2 + h4)
u (P4) =

1

h2
.

Since P ∗ ∈ Ω∗
h, one of its neighborhood should be Γh, let us say P1. Then
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(
2

h1h3
+

2

h2h4

)
u (P ∗) =

2

h3 (h1 + h3)
u (P3) +

2

h2 (h2 + h4)
u (P2)

+
2

h4 (h2 + h4)
u (P4) +

1

h2(
2

h1h3
+

2

h2h4

)
u (P ∗) ≤

(
2

h3 (h1 + h3)
+

2

h2 (h2 + h4)
+

2

h4 (h2 + h4)

)
u (P ∗)

+
1

h2

2

h1 (h1 + h3)
u (P ∗) ≤ 1

h2

u (P ∗) ≤ h1 (h1 + h3)

2h2
≤ 1.

�

Theorem 2.3. (Convergence of the solution) u (P )− uh (P ) = O
(
h2
)
, ∀P ∈ Ωh ∪ Γh.

Proof. Since u− uh = 0 on Γh, we can apply the summation formula. ∀P ∈ Ωh ∪ Γh

(u− uh) (P ) =
∑
Q∈Ωh

(−∆h (u− uh) (Q))Gh (P,Q)h2

=
∑
Q∈Ω∗

h

(−∆h (u− uh) (Q))Gh (P,Q)h2

+
∑

Q∈Ωh−Ω∗
h

(−∆h (u− uh) (Q))Gh (P,Q)h2

= O
(
h3
)
+O

(
h2
)
.

�

3. SYMMETRIZATION IMPLEMENTATION

We listed Shortley-Weller method and Gibou method for Poisson equation with Dirichlet
boundary condition. Shortley-Weller method excels Gibou method since it produces second
order accurate gradient, but Gibou method is preferred to Shortley-Weller for its implemen-
tation is a symmetric linear system while that of Shortley-Weller is non-symmetric. In this
section, we introduce a new implementation of Shortley-Weller in one dimension as symmetric
linear system which is obviously the winner over the two choices.
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The following equations are the discretization of Shortley-Weller method in one dimension.

...
2

hi− 1
2
hi+ 1

2

ui −
2

hi− 1
2

(
hi− 1

2
+ hi+ 1

2

)ui−1 −
2

hi+ 1
2

(
hi− 1

2
+ hi+ 1

2

)ui+1 = fi

2

hi+ 1
2
hi+ 3

2

ui+1 −
2

hi+ 1
2

(
hi+ 1

2
+ hi+ 3

2

)ui − 2

hi+ 3
2

(
hi+ 1

2
+ hi+ 3

2

)ui+2 = fi+1

...

Here hi+ 1
2

= xi+1 − xi. The scheme results in non-symmetric linear system, because
2

h
i+1

2

(
h
i− 1

2
+h

i+1
2

) ̸= 2

h
i+1

2

(
h
i+1

2
+h

i+3
2

) . The idea of the new implementation is fairly simple.

Multiplying the volume element on each equation, we get

...

2
(
hi− 1

2
+ hi+ 1

2

)
hi− 1

2
hi+ 1

2

ui −
2

hi− 1
2

ui−1 −
2

hi+ 1
2

ui+1 = fi

(
hi− 1

2
+ hi+ 1

2

)
2
(
hi+ 1

2
+ hi+ 3

2

)
hi+ 1

2
hi+ 3

2

ui+1 −
2

hi+ 1
2

ui −
2

hi+ 3
2

ui+2 = fi+1

(
hi+ 1

2
+ hi+ 3

2

)
...

Now, the scheme results in symmetric linear system, now note the equality 2
h
i+1

2

= 2
h
i+1

2

.

In higher dimensions, the simple trick does not work. For example, in two dimensions, the
original discretizations are

...(
2

hi− 1
2
,jhi+ 1

2
,j

+
2

hi,j− 1
2
hi,j+ 1

2

)
ui,j − 2

hi− 1
2
,j

(
hi− 1

2
,j + hi+ 1

2
,j

)ui−1,j

− 2

hi+ 1
2
,j

(
hi− 1

2
,j + hi+ 1

2
,j

)ui+1,j − 2

hi,j− 1
2

(
hi,j− 1

2
+ hi,j+ 1

2

)ui,j−1

− 2

hi,j+ 1
2

(
hi,j− 1

2
+ hi,j+ 1

2

)ui,j+1 = fi,j
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2

hi+ 1
2
,jhi+ 3

2
,j

+
2

hi+1,j− 1
2
hi+1,j+ 1

2

)
ui+1,j −

2

hi+ 1
2
,j

(
hi+ 1

2
,j + hi+ 3

2
,j

)ui,j
− 2

hi+ 3
2
,j

(
hi+ 1

2
,j + hi+ 3

2
,j

)ui+2,j −
2

hi,+1j− 1
2

(
hi+1,j− 1

2
+ hi+1,j+ 1

2

)ui+1,j−1

− 2

hi+1,j+ 1
2

(
hi+1,j− 1

2
+ hi+1,j+ 1

2

)ui+1,j+1 = fi+1,j

...
The scheme results in non-symmetric linear system, because

2

hi+ 1
2
,j

(
hi− 1

2
,j + hi+ 1

2
,j

) ̸= 2

hi+ 1
2
,j

(
hi+ 1

2
,j + hi+ 3

2
,j

) .
Multiplying by the volume element

h
i− 1

2 ,j
+h

i+1
2 ,j

2

h
i,j− 1

2 ,j
+h

i,j+1
2

2 the first equation and multi-

plying by
h
i+1

2 ,j
+h

i+3
2 ,j

2

h
i+1,j− 1

2
+h

i+1,j+1
2

2 the second equation does not fix the non-equality.
Up to now, we know not of any way to implement Shortley-Weller as symmetric linear sys-
tem, and guess that such simple conversion in one dimension might be impossible in higher
dimensions.

4. SUPRA-CONVERGENCE OF GRADIENT

It was shown in [6] how supra-convergence for the gradient of solution occurs in the standard
five-point method for Poisson equation with rectangular domains. The analysis is based on
integration-by-parts

∫
Ω u ·∆u dΩ = −

∫
Ω |∇u|2dΩ. Let ∆huh = f be an approximation for

∆u = f , then ∆e = c, where e = u−uh is the error of the approximation and c = ∆hu−∆u
is the consistency error. When the following discrete integration-by-parts holds∫

Ωh

uh ·∆huh dΩh = −
∫
Ωh

|∇uh|2,

then it implies that
∫
Ωh

|∇uh −∇u|2 dΩh ≤
∫
Ωh

|e · c| dΩh ≤ ∥e∥L2 ∥c∥L2 = O
(
h2
)
O
(
h2
)

and we obtain a proof for the second order convergence of the solution gradient in L2. In the
usual setting, we show that the discrete integration-by-parts does not hold in the following.
In this article, we present only our current partial results, but the analysis should go on by
calculating the estimate of the error in integration-by-parts.

4.1. Discrete Integration-by-parts. We want to derive a discrete version of
∫
Ω uxv = −

∫
Ω uvx

when u|Γ = 0. Assume that uij is defined on Ωh, and vi+ 1
2
,j is defined whenever (xi, yj) ∈ Ωh

or (xi+1, yj) ∈ Ωh. Based on the conventional control volumes, the two integrals are dis-
cretized as
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∫
Ω

uxv :=
∑

(xi,yj)∈Ωh

(xi+1,yj)∈Ωh

ui+1,j − uij
hi+ 1

2
,j

· vi+ 1
2
,j · hi+ 1

2
,j ·

 h
i,j+1

2
+h

i,j− 1
2

4

+
h
i+1,j+1

2
+h

i+1,j− 1
2

4


∫
Ω

uvx :=
∑

(xi,yj)∈Ωh

uij
vi+ 1

2
,j − vi− 1

2
j

h
i+1

2 ,j
+h

i− 1
2 ,j

2

·
hi+ 1

2
,j + hi− 1

2
,j

2
·
hi,j+ 1

2
+ hi,j− 1

2

2
.

The summation of
∫
Ω uxv requires the definition of hi,j± 1

2
when (xi, yj) ∈ Γh. Note that

(xi, yj) ∈ Γh implies either (xi−1, yj) ∈ Ωh or (xi+1, yj) ∈ Ωh. In the case when (xi, yj) ∈
Γh and (xi+1, yj) ∈ Ωh, we define hi,j+ 1

2
= hi+1,j+ 1

2
and hi,j− 1

2
= hi+1,j− 1

2
, and the other

cases are defined in the same fashion.
Now we compare the difference of the two summations.

∫
Ω

uvx =
∑

(xi,yj)∈Ωh

uij

(
vi+ 1

2
,j − vi− 1

2
j

) hi,j+ 1
2
+ hi,j− 1

2

2

=
∑

(xi,yj)∈Ωh

uijvi+ 1
2
,j

hi,j+ 1
2
+ hi,j− 1

2

2
−

∑
(xi,yj)∈Ωh

uijvi− 1
2
,j

hi,j+ 1
2
+ hi,j− 1

2

2

=
∑

(xi,yj)∈Ωh

uijvi+ 1
2
,j

hi,j+ 1
2
+ hi,j− 1

2

2
−

∑
(xi+1,yj)∈Ωh

ui+1jvi+ 1
2
,j

hi+1,j+ 1
2
+ hi+1,j− 1

2

2

=
∑

(xi,yj)∈Ωh

(xi+1,yj)∈Ωh

uijvi+ 1
2
,j

hi,j+ 1
2
+ hi,j− 1

2

2

−
∑

(xi,yj)∈Ωh

(xi+1,yj)∈Ωh

ui+1jvi+ 1
2
,j

hi+1,j+ 1
2
+ hi+1,j− 1

2

2

=
∑

(xi,yj)∈Ωh

(xi+1,yj)∈Ωh

vi+ 1
2
,j

(
uij

hi,j+ 1
2
+ hi,j− 1

2

2
− ui+1j

hi+1,j+ 1
2
+ hi+1,j− 1

2

2

)

Now, combining the two summations,
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∫
Ω

uxv +

∫
Ω

uvx

=
∑

(xi,yj)∈Ωh

(xi+1,yj)∈Ωh

(ui+1,j − uij) vi+ 1
2
,j

hi,j+ 1
2
+ hi,j− 1

2
+ hi+1,j+ 1

2
+ hi+1,j− 1

2

4

+
∑

(xi,yj)∈Ωh

(xi+1,yj)∈Ωh

vi+ 1
2
,j

(
uij

hi,j+ 1
2
+ hi,j− 1

2

2
− ui+1j

hi+1,j+ 1
2
+ hi+1,j− 1

2

2

)

=
∑

(xi,yj)∈Ωh

(xi+1,yj)∈Ωh

vi+ 1
2
,j

 ui+1,j

(
h
i,j+1

2
+h

i,j− 1
2

)
−
(
h
i+1,j+1

2
+h

i+1,j− 1
2

)
4

+ui,j

(
h
i,j+1

2
+h

i,j− 1
2

)
−
(
h
i+1,j+1

2
+h

i+1,j− 1
2

)
4


=

∑
(xi,yj)∈Ωh

(xi+1,yj)∈Ωh

vi+ 1
2
,j

ui+1,j + uij
2

(
hi,j+ 1

2
+ hi,j− 1

2

)
−
(
hi+1,j+ 1

2
+ hi+1,j− 1

2

)
4

̸= 0

Note that
(
hi,j+ 1

2
+ hi,j− 1

2

)
−
(
hi+1,j+ 1

2
+ hi+1,j− 1

2

)
= 0 for every grid node (xi, yj) away

from boundary, so the above sum is not zero but should be near zero.

5. CONCLUSION

We reviewed the analysis for supra-convergence of Shortley-Weller method in section 2. It
was not a simple copy but serves a basic foundation to go toward the yet undiscovered analysis
for other supra-convergences. In section 3, we introduced a new symmetric implementation
of Shortley-Weller method in one dimension. In section 4, we presented a partial result for
supra-convergence for the gradient of solution.

The Poisson equation is of primal importance in many physical problems, especially in fluid
flows with incompressible condition. Both the supra-convergences of solution and its gradient
are important. Actually in incompressible fluid flows, that of gradient is more important. Each
of Shortley-Weller’s, Gibou’s, and Purvis’ is one of the most popular methods for solving
Poisson equation and their supra-convergence properties have been numerically observed and
verified through numerous trials. Compared to their importances, mathematical foundation for
understating the properties are far short. Though partial, this article serves an introduction and
mathematical setting for the analysis.
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