• Title/Summary/Keyword: Convergence characteristics of blind equalization algorithm

Search Result 16, Processing Time 0.022 seconds

Convergence Characteristics of the Normalized Blind Equalization Algorithm

  • Lee, Gwang-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.136-139
    • /
    • 2010
  • We derived Stop-and-go normalized DD, dual-mode normalized Sato, dual-mode NCMA blind equalization algorithm for complex data in this research. And then, the convergence characteristics of the proposed SG-NDD, dual-mode NSato blind equalization algorithms are compared with those of SG-DD, dual-mode Sato algorithms. In general, the normalized blind equalization algorithms have better convergence characteristics than the conventional algorithms.

A New Blind Equalization Algorithm with A Stop-and-Go Flag (Stop-and-Go 플래그를 가지는 새로운 블라인드 등화 알고리즘)

  • Jeong, Young-Hwa
    • The Journal of Information Technology
    • /
    • v.8 no.3
    • /
    • pp.105-115
    • /
    • 2005
  • The CMA and MMA blind equalization algorithm has the inevitable large residual error caused by mismatching between the symbol constellation at a steady state after convergence. Stop-and-Go algorithm has a very superior residual error characteristics at a steady state but a relatively slow convergence characteristics. In this paper, we propose a SAG-Flagged MMA as a new adaptive blind equalization algorithm with a Stop-and-Go flag which follows a flagged MMA in update scheme of tap weights as appling the flag obtaining from Stop-and-Go algorithm to MMA. Using computer simulation, it is confirmed that the proposed algorithm has an enhancing performance from the viewpoint of residual ISI, residual error and convergence speed in comparison with MMA and Stop-and-Go algorithm. Algorithm has a new error function using the decided original constellation instead of the reduced constellation. By computer simulation, it is confirmed that the proposed algorithm has the performance superiority in terms of residual ISI and convergence speed compared with the adaptive blind equalization algorithm of CMA family, Constant Modulus Algorithm with Carrier Phase Recovery and Modified CMA(MCMA).

  • PDF

A Study on Least Mean Fourth (LMF) and Least Mean Squares-Fourth (LMSF) Blind Equalization Algorithm (최소평균 사제곱 (LMF) 및 최소평균 제곱과 사제곱을 혼합한 형태 (LMSF)의 블라인드 등화 알고리즘에 관한 연구)

  • Yoon, Tae-Sung;Byun, Youn-Shik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.38-44
    • /
    • 1997
  • In this study, wer derived LMF-Sato, LMSF-Sato complex blind equalization algorithms for complex data. And then, the convergence rates, the convergence characteristics at the steady state and the stability of the proposed LMF and LMSF blind equalization algorithms are compared with those of LMS-Sato blind equalization algorithm. In simulations with 16-QAM data, LMF-Sato and LMSF-Sato algorithms showed better performance comparing with LMS-Sato algorithm generally. When the initial estimation errors of the weights of the equalizer are large, LMF-Sato algorithm showed ill characteristic in stability. However, LMSF-Sato algorithm has good covergence characteristics and preserves robustness.

  • PDF

A study on normalize dblind equalization algorithms (정규화된 블라인드 등화 알고리즘에 관한 연구)

  • Jang, Gi-Won;Huh, Chang-Won;Yoon, Tae-Sung;Ha, Pan-Bong;Huh, Young
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.627-630
    • /
    • 1998
  • In this study, we derived stop-and-go normalized DD, dual-mode normalized sato, dual-mode NCMA blind equalization algorithm for complex data. and then, the convergence characteristics of the proposed SG-NDD, dual-mode NSato blind equalization algorithms are compared with those of SG-DD, dual-mode sato algorithm. In genral, the normalized blind equalization algorithms have better convergence characteristics than the conventional algorithms.

  • PDF

Convergence Rate Improvement of the Blind Equalization Algorithm for QAM System using Selective NCMA (QAM 시스템에 선택적으로 NCMA를 적용한 블라인드 등화 알고리즘의 수렴속도 개선)

  • 강윤석;안상식
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.43-46
    • /
    • 1999
  • Blind equalizers recover the transmitted data using signal's statistical characteristics only. Because of its computational simplicity and fast convergence rate, CMA is widely used in practice. Blind equalizers, however, converge much slowly than conventional equalizers which use the training signals. In order to improve the convergence rate, many modified blind equalization algorithms have been proposed. Among those, Normalized CMA (NCMA) was applied to increase the convergence rate by using the large step size. Unfortunately it can only be applied for the constant modulus signal constellation scheme. this paper, we propose the Selective NCMA (SNCMA) that improve the convergence rate of blind equalization algorithms by using NCMA for non-constant modulus signalling method such as QAM constellation. We achieved fast start-up convergence rate and reduced steady-state residual error.

  • PDF

Maximization of Zero-Error Probability for Adaptive Channel Equalization

  • Kim, Nam-Yong;Jeong, Kyu-Hwa;Yang, Liuqing
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.459-465
    • /
    • 2010
  • A new blind equalization algorithm that is based on maximizing the probability that the constant modulus errors concentrate near zero is proposed. The cost function of the proposed algorithm is to maximize the probability that the equalizer output power is equal to the constant modulus of the transmitted symbols. Two blind information-theoretic learning (ITL) algorithms based on constant modulus error signals are also introduced: One for minimizing the Euclidean probability density function distance and the other for minimizing the constant modulus error entropy. The relations between the algorithms and their characteristics are investigated, and their performance is compared and analyzed through simulations in multi-path channel environments. The proposed algorithm has a lower computational complexity and a faster convergence speed than the other ITL algorithms that are based on a constant modulus error. The error samples of the proposed blind algorithm exhibit more concentrated density functions and superior error rate performance in severe multi-path channel environments when compared with the other algorithms.

Sliced Multi-modulus Blind Equalization Algorithm

  • Abrar, Shafayat;Axford, Roy A. Jr.
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.257-266
    • /
    • 2005
  • Many multi-modulus blind equalization algorithms (MMA) have been presented in the past to overcome the undesirable high misadjustment exhibited by the well-known constant modulus algorithm. Some of these MMA schemes, specifically tailored for quadrature amplitude modulation (QAM) constellations, have also been proved to fix the phase offset error without needing any rotator at the end of the equalizer stage. In this paper, a new multi-modulus algorithm is presented for QAM signals. The contribution lies in the technique to incorporate the sliced symbols (outcomes of decision device) in the multi-modulus-based weight adaptation process. The convergence characteristics of the proposed sliced multi-modulus algorithm (S-MMA) is demonstrated by way of simulations, and it is shown that it gives better steady-state performance in terms of residual inter-symbol interference and symbol-error rate. It has also been shown that the proposed algorithm exhibits lesser steady-state misadjustment compared to the best reported MMA.

  • PDF

Alternate Adaptation Algorithm for Blind Channel Equalization (블라인드 채널 등화를 위한 교번 적응 알고리즘)

  • Oh, Kil-Nam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.129-135
    • /
    • 2011
  • The alternate adaptation algorithm (AAA) is proposed to improve the convergence characteristics and steady-state performance of the constant modulus algorithm (CMA). The alternate adaptation algorithm is a new equalization method which adapts an equalizer alternately by the algorithm with excellent blind convergence characteristics or the algorithm with better steady-state error performance. In this paper, it is introduced that the alternate adaptation equalization of the vsCMA (variable step-size CMA) and the decision-directed (DD) algorithm. We, first, designed the vsCMA with variable step-size to improve the steady-state error performance of the CMA, and combined it with the DD by alternate adaptation. As a result, it was mitigated that the sensitivity of performance fluctuation due to switching timing in CMA-DD switching method, and it was improved that the convergence speed and steady-state error performance of the CMA. Through computer simulations, under multipath channel condition, the usefulness of the proposed method was confirmed for 16-QAM.

A Study on the Complex-Channel Blind Equalization Using ITL Algorithms

  • Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.760-767
    • /
    • 2010
  • For complex channel blind equalization, this study presents the performance and characteristics of two complex blind information theoretic learning algorithms (ITL) which are based on minimization of Euclidian distance (ED) between probability density functions compared to constant modulus algorithm which is based on mean squared error (MSE) criterion. The complex-valued ED algorithm employing constant modulus error and the complex-valued ED algorithm using a self-generated symbol set are analyzed to have the fact that the cost function of the latter forces the output signal to have correct symbol values and compensate amplitude and phase distortion simultaneously without any phase compensation process. Simulation results through MSE convergence and constellation comparison for severely distorted complex channels show significantly enhanced performance of symbol-point concentration with no phase rotation.

A New Decision-Directed Equalization with Improved Blind Convergence Properties by Error Scaling (오차 스케일링에 의해 블라인드 수렴 특성을 개선한 새로운 판정의거 등화)

  • Oh, Kil Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.419-424
    • /
    • 2015
  • The Decision-directed (DD) algorithm is known to be not effective to initialize a blind equalizer in the channel conditions when the eye diagram of received signals is completely closed because it can not open the eye diagram enough. In this paper, we propose a new error to replace the error of the conventional DD algorithm. The new DD error is the conventional DD error scaled by the modulus of symbol decision, new DD algorithm using this error is effective to open the closed eye diagram in early stage of equalization unlike the conventional DD. The new DD algorithm appling the new error is showed excellent convergence characteristics as compared to the CMA widely used in blind initialization, particularly, is useful for equalization of signals having multimodulus. The performance of the new DD algorithm is verified through the simulation for the higher-order QAM signals.