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Maximization of Zero-Error Probability for Adaptive
Channel Equalization

Namyong Kim, Kyu-Hwa Jeong, and Liuging Yang

Abstract: A new blind equalization algorithm that is based on max-
imizing the probability that the constant modulus errors concen-
trate near zero is proposed. The cost function of the proposed al-
gorithm is to maximize the probability that the equalizer output
power is equal to the constant modulus of the transmitted sym-
bols. Two blind information-theoretic learning (ITL) algorithms
based on constant modulus error signals are also introduced: One
for minimizing the Euclidean probability density function distance
and the other for minimizing the constant modulus error entropy.
The relations between the algorithms and their characteristics are
investigated, and their performance is compared and analyzed
through simulations in multi-path channel environments. The pro-
posed algorithm has a lower computational complexity and a faster
convergence speed than the other ITL algorithms that are based on
a constant modulus error. The error samples of the proposed blind
algorithm exhibit more concentrated density functions and supe-
rior error rate performance in severe multi-path channel environ-
ments when compared with the other algorithms.

Index Terms: Blind, constant modulus error, equalization, infor-
mation-theoretic learning (ITL), Parzen window, zero-error prob-
ability.

I. INTRODUCTION

Unlike the mean square error (MSE) criterion that is based on
error energy, the information-theoretic learning (ITL) method
is based on the combined use of a nonparametric probability
density function (PDF) estimator and a procedure to compute
entropy [1]. As a robust ITL algorithm, a minimization of er-
ror entropy (MEE) algorithm has been developed by Principe
and Erdogmus [2]. In their work it has also been shown that the
combination of Renyi’s quadratic entropy expression with the
Parzen PDF estimator [1] is negatively proportional to the log-
arithmic value of the information potential [1] of error samples.
Since logarithm is a monotonic function, it maximizes the in-
formation potential in the MEE, instead of minimizing Renyi’s
entropy. Therefore, the MEE criterion can be considered as the
maximization of information potential. The MEE criterion has
shown superior performance when compared to the MSE cri-
terion in supervised channel equalization applications [3]. An-
other cost function based on the quadratic distance between two
distributions has been considered by Principe et al. [4]. The ob-
jective of the algorithm that is based on the minimization of Eu-
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clidean distance (MED) is to adjust the system such that the er-
ror PDF is as close as possible to the delta distribution. This
approach can be considered as a method that matches the er-
ror PDF with the delta distribution. Some of the demerits of the
MED and MEE algorithms include the computational complex-
ity that arises from the estimation of the entropy or the quadratic
distance and their incompatibility with unsupervised signal pro-
cessing.

In order to realize unsupervised, blind channel equalization,
we can adopt the strategy that maximizes the probability that
the constant modulus error (CME) becomes zero. Firstly, we
present a new blind method to use the CME in the minimiza-
tion of the Euclidean distance (MED-CME) that forces the PDF
of the CME to match with the delta distribution. In the process
of MED-CME, two conflicting terms are observed. The term for
the maximization of the CME entropy forces the CME samples
to have a dispersed distribution. This is in discord with the goal
that the error samples should be near zero. In order to prevent
this conflict, we propose a method to maximize only the other
term, the term for zero-CME probability. Thirdly, the possibil-
ity of applying the CME to the MEE criterion is investigated and
certain problems of the method are discussed.

The extension of ITL to blind methods by substituting the
trained error with the CME has been considered in references [5]
and [6], but the algorithms operate under heavy computational
burdens. In this paper, we show that the implementation of the
new method of maximization of zero-error probability based on
the CME requires a significant reduction in computational com-
plexity and is superior in performance in the blind equalization
of multi-path channel models.

This paper is organized as follows. Section II presents the
supervised ITL criteria that are related with Euclidean PDF
distance and their algorithms. New blind equalizer algorithms
based on CME, MED, and maximum zero-error probability cri-
terion are proposed in Section III. Section IV reports and dis-
cusses the simulation results. Finally, concluding remarks are
presented in Section V.

II. SUPERVISED ITL CRITERIA RELATED TO THE
EUCLIDEAN PDF DISTANCE AND THEIR
ALGORITHMS

A. Supervised MED Criterion

In this sub-section we introduce supervised finite impuise re-
sponse (FIR) filter algorithms in order to create a concentration
of error samples near zero by using the ITL criteria that are re-
lated to the Euclidean PDF distance. With this as the objective,
we first minimize the Euclidean distance ED|fg(e), 5(e)] be-
tween the two PDFs, the error signal PDF fg(e), and the Dirac-
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delta function §(e) so that the error PDF shows an impulse peak
at the origin.

ED[fs(e),d(e)] = [ (F3(6) + 5(€) - 2fm(0)5(6)) de.

¢y
Substituting P, for [ f2(¢)d¢ in (1), where IP, is defined as
the information potential in reference [1], we obtain

ED|[fz(e),é(e)] = IF. + ¢ — 2fg(0). @

The square of the Dirac distribution, [ §%(£)d¢, is mathemati-
cally undefined, but the term can be treated as a constant since
it does not depend on the weights of the adaptive system.

This supervised Euclidean distance criterion between the er-
ror PDF and delta distribution has been proposed for infinite
impulse response (IIR) adaptive filtering in reference [4].

We now derive a FIR adaptive equalizer algorithm that is
based on the supervised Euclidean distance criterion between
the error PDF and the delta distribution. In the case of FIR lin-
ear equalization, a tapped delay line (TDL) with L taps can be
used for the input vector Xy = [k Tp—1 Tp—2 - Th—r4+1]7
and the output sample yr, = W7 Xy, where W), is the weight
vector at time k. Let us define the error ef, = dy — y, where
dy, is the desired value at time k; we can then adopt a gradient
descent method for the minimization of the cost function (2).

OED|fr(e), ( e)] 3)
oW
In order to calculate the error PDF fg(e) non-parametrically,

we need the Parzen estimator [1] that contains a Gaussian kernel
and a block of N error samples as follows

Wiew = Woig — UMED

1 N
fele) = NZG,,(e

“

In online systems that operate on a sample-by-sample basis, we
can use a small sliding window and then evaluate the gradient
from

OED|(fp(e),d(e)] 1
= j— €i)
8W 202N2 z—kEI:V-I-l 3-kZN+1
G, z(e; — &)Xy — Xi]
2 i 6yg
+ =% ( ez)
a*N izk—ZN+1

Then, the MED algorithm for the supervised FIR adaptive equal-
izer can be expressed as

HMED

Wi = Wy — PN 2N

Z Z (ej —€:)

fmk—N+41 jek— N1
k

Goyalej—e)X; =X -2
i=k—N+1

Go(—€)Xi| (6)

where pmep is the step-size for the adaptation control of the
supervised MED algorithm.

B. Supervised MEE Criterion

Entropy is a scalar quantity that provides a measure for the
average information contained in a given PDF. When the error
entropy is minimized, the error distribution of adaptive systems
is concentrated. Renyi’s quadratic error entropy which is effec-
tively used in ITL methods is defined as

H(e) = log ( / fE(ﬁ)zdﬁ) .

Substituting the information potential 1P, for [ fZ(£)d¢ in
(1), we obtain

)

H(e) = —log(I Fe) ®

where [P, = N—2 Ez—k N+1 E —N+1 G, 3(ej—€i). Ob-
viously, minimizing the error entropy H (e) is equivalent to max-
imizing the information potential I P,. This criterion of maxi-
mizing I P, is referred to as MEE [2].

By applying a gradient ascent method to the maximization of
IP,, the supervised MEE algorithm in references [2] and [3] can
be obtained as

UMEE
o2 N2

Wi = Wy +3

Z Z (ej — €i)

t=k—N+1j=k—N+1

G, e — €)X — Xy )

C. Supervised MZEP Criterion

Minimizing ED|fr(e), (e)] in (2) leads to the simultaneous
minimization and maximization of I P, and f(0), respectively,
since they have opposite signs. It is noticeable that the mini-
mization of IF,, which the indicates the maximization of the
error entropy, forces the error samples to have a dispersed dis-
tribution. This is in discord with the MEE criterion that maxi-
mizes I P, in (8) to force the error samples to be near zero [2].
From the aspect of physical meaning, minimizing I F, can be
considered as applying a force opposite to the direction of the
overall force of the MED by pushing the error samples apart
and causing them to be diffused. To avoid this conflict, we pro-
pose to maximize only the third term, fz(0), while omitting the
error information potential I P, from (2). We can also remove
the constant term from (2), because it does not depend on the
equalizer weight W. By adopting this procedure, a criterion for
errors, maximization of zero-error probability (MZEP), can be
obtained as follows

max f5(0)- (10)

Although (9) has its origin in the Euclidean distance crite-
rion, this new cost function no longer uses the Euclidean dis-
tance, because it only contains the term fg(0). With e = 0
in (4), the zero-error probability fr(0) reduces to fg(0) =
NI +1Go(—e;). We now derive a gradient ascent
method for the maximization of the cost function (10) as fol-
lows Wiew = Wi + pmzepdfe(0)/8W. The gradient is
evaluated from

dfe(0) 1
oW 02N

Oy
out-er

>

i=k—N-+1

an



KIM et al.: MAXIMIZATION OF ZERO-ERROR PROBABILITY FOR ADAPTIVE...

The MZEP algorithm can be expressed as

k
Z eiGU(—ei)Xi.

i=k—N+41

_ UMZEP
Wi =Wy + 2N 12)

This expression for the resultant supervised method of maxi-
mizing the zero-error probability is exactly the same as that for
the maximization of the correntropy criterion (MCC), which has
been derived by using a different approach, described as fol-
lows [7], [8].

D. Supervised MCC Criterion

Correntropy is a similarity measure that is analogous to the
autocorrelation of two random processes. Let a nonlinear map-
ping ® transform the data to an infinite dimensional reproducing
kernel Hilbert space F'. The auto-correntropy function Vx (¢, s)
for a random process X (¢) is then defined as

Vx(t,s) = E[< (X (t),®(X(s)) >F] (13)
where E[-] and < -,- > g denote statistical expectation and inner
product in F, respectively.

Cross-correntropy is a generalized version of the similarity
measure between two scalar random variables X and Y defined
by

V(X,Y) = E[< ®(X), ®(Y) >¢]. (14)

When the Gaussian kernel G,(z — z;), which satisfies Mer-
cer’s Theorem [9], is used, (14) can be rewritten as V,(X,Y) =
E[G,(X —Y)]. In practice, the sample estimator can be used
in place of statistical expectation, and we obtain the following
cross-correntropy function V,(X,Y) = N—! Zf\;l Go(z; —
;). Replacing z; with d;, we can obtain the cross-correntropy
for the error signal [7], [8].

1 & 1 &
Vo(D,Y) = 53 _Goldi =) = 5 D _Goles).  (15)
g=1 =1

This is of exactly the same form as that of (10). Consequently,
we can determine that the maximizing cross-correntropy be-
tween the desired signal and the system output leads to the same
criterion as the MZEP, which has been induced in the process
of mediating the conflict between the two opposite potentials in
the MED criterion. Since the two criteria have the same form,
from this point on in this paper, the MZEP approach will also be
referred to as the MCC.

To prove that (10) has a global maximum when the error
equals zero, e = (), we need to show that non-zero error sample
values result in a smaller value of (10), i.e.,

k

fe0)=% D Gol-e)<G,(0)  (16)

or equivalently Z?=k~N+1 Gs(—€;) < NG,(0).

Since the maximum value of the Gaussian kernel with zero
mean is achieved when the error is zero, this inequality is read-
ily satisfied. This proves that the supervised MZEP (MCC) cri-
terion with the Parzen window preserves the global maximum.
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Fig. 1. Normalized cost function output as a function of equalizer weight.

In order to verify that (10) plays the role of a cost function in
adaptive equalization and that it has a single maximum (global
optimum) with respect to the equalizer weights, the value of the
cost function is tested for a simple case with an all pass chan-
nel having a delta function (k) as its impulse response and an
equalizer with a single weight. In Fig. 1, the normalized cost
surface is plotted against various weight values. It shows that
the supervised MZEP (MCC) cost function has a single maxi-
mum point. It is noticeable that the MEE criterion in (9) deals
with e; — e;, whereas the MZEP (MCC) criterion in (12) deals
only with e;. Assuming e; to be the zero mean and uncorrelated,
the variance of e; — e; becomes

Varg(e; — e;) = E[(e; — €;)%] = 2E[e?] = 2Varg(e;). (17)

This relationship indicates that the MEE or MED algorithms
may suffer performance degradation when compared to the
MZEP (MCC) algorithms in certain environments.

III. CMA AND NEW BLIND EQUALIZER
ALGORITHMS BASED ON CME AND ITL
CRITERIA

A CMA

Many blind equalization algorithms employ nonlinearity at
the equalizer output y, in order to generate the error signal
for weight updates. One of the well-known blind equaliza-
tion algorithms is the constant modulus algorithm (CMA) that
minimizes the CME ecmye = |yk|2 — Ry on the basis of
the MSE criterion [10]. The cost function Powya is Poma =
E[(lys|* — R2)?), where |yx|? is the equalizer output power and
Ry = E||d|*]/E[|dx|?]. We assume that M-ary pulse ampli-
tude modulation (PAM) signaling systems [11] are employed
and all the M levels are equally likely to be transmitted a priori
with a probability of 1/M, and the transmitted levels A, take
the following discrete values

Ap=2m—-1-Mm=1,2,---, M. (18)
Then, the constant modulus Ry becomes
Ry = E[|Am|"]/E{|An[”). (19)

The minimization of Poyma with respect to the equalizer weights
can be performed recursively by using the steepest descent
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method as follows Wyew = Wi — tema 0Poma /OW, where
Hcma is the step-size parameter of the CMA. By differentiat-
ing Poma and dropping the expectation operation, we obtain
the CMA for adjusting the blind equalizer weights: Wy ; =
Wi — 2uomaXiyk (Jyl” — Ra)-

B. MCC-CME

Minimizing Pcpa is equivalent to minimizing only the vari-
ance (second order statistics) of the CME. As an alternative ap-
proach, we can adopt a new strategy that maximizes the prob-
ability that the CME becomes zero for blind channel equal-
1zat10n For this purpose, by inserting the CME ecyg =
lyr|> — Ry into (4) and using a block of past output samples

{yk,y;c 157 Yk— N+1} we have
1 &
fE(GCME) = -N Z Go(eCME e [|y@§2 - Rz})
i=k—N+1
k 2

1 —(eome — [lyil* = Ra])®
=5 X exp

N iR ovem 207

(20)

Considering ecymEg to be zero, the probability fr(ecur = 0)
reduces to

[lwa|* — Ra]).-

k
>, Gol-

i=k—N+1

felecme =0) = = (21)

- We now derive a gradient ascent method for the maximization
of the cost function (20).

k
2 2
Witr = Wp + umcc-oMB 57 ’ Y Gollul - Ry)
i=k—N+1
- (Re — il )i X; (22)

where umcc—cuE is the step-size for convergence control of
the proposed blind algorithm. For convenience, this proposed
blind algorithm will be referred to as MCC-CME,

The proposed MCC-CME is based on ITL, whercas the CMA
is based on the MSE criterion, which contains only second-order
statistics. The MSE criterion, therefore, would be able to extr-
act all possible information from a signal whose statistics are
only defined by its mean and variance. On the other hand, in the
case of the proposed MCC-CME that uses the Gaussian kernel,
all the moments of the PDF (not only the second moments) are
constrained. Expanding the Gaussian kernel by using a Taylor
series expansion, the criterion of MCC-CME can be rewritten as

1 N1
N > Gol(—llyr—il® - Ra])

i=0

fe(ecme = 0) =

N1 oo

NU\/— Z Z S i - R, @)

This involves all the even-order moments of the error.
Spec1ﬁca11y, the term corresponding to n = 1 in (23) is

2 _
203\/5;1\, Zz_O (lye—i]® — R2)? = ﬁV&rcME where
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"Varcmp is the variance of the CME, with the sample mean es-

timate used in place of the statistical expectation; this shows
that the information provided by the second-order statistics is
included-within the MCC-CME criterion. Noting that this uses
the higher-order information contained in the data, instead of
only using the second-order information, as in the case of the
MSE criterion, one can expect this criterion to provide more
meaningful representations of the CME data, which may result
in improved performance.

C. MEE-CME

The supervised MEE criterion in (8) deals with e; — e;.
By replacing e; with CME }yg)z — Ry, the information po-
tential that is based on the CME, I PcyE, becomes indepen-
dent of the constant modulus R, as shown below. IPovyg =
N8 i1 ogehnvt1 Covall9il—Iy;]%). To maximize
the cost function (23), we adopt the gradient ascent method. The
gradient is evaluated from

k k .
oo Y &, s0ul -1yl

=k—N+1 j=k—N+1
(el =l P) X5 — piX3).

MEE-CME can be written using the gradient as follows.
Wit1 = Wi+ umee-cMmed! Pome/OW, where pivEE-cME
is the step-size for MEE-CME.

IPcyME is mammlzed when the equalizer output powers are
the same, i.e., |g:]° = |y;|°. In binary modulation, each de-
sired signal d; = +1 has the same absolute value. That is, the
power of each desired signal has a common value |d;|* = 1.
This can be viewed as an attempt by the equalizer to cluster the
outputs such that they have their desired power values. How-
ever, in M-ary modulation schemes, the power of each desired
signal has different values. The force induced from maximiz-
ing I Poyg will lose its target direction, because the cost func-
tlon forces the equalizer outputs to have the same output power
lyil® = = |y; %, in opposition to their desire to have different pow-
ers. Consequently, MEE-CME loses the information of the con-
stant modulus K. This may cause MEE-CME to not converge
or to converge slower than other algorithms, depending son the
constant modulus Ra.

8IPoue 1
W ~ NZo?

(24)

D. MED-CME

On the other hand, minimization of the Euclidean distance
ED|fe(ecur), 6(ecmr)] between the two PDFs around the
CME signals ecmg = ka|2 — R results in a match between
fe(ecme) and the Dirac-delta function. This process tries to
create a concentration of CME samples near zero. The process
of minimizing ED[fg(ecmr), 6(ecmg)], also involves two dif-
ferent simultaneous forces: minimization of I Povg and maxi-
mization of 2 f5(0). The cost function EDoyp for MED-CME
can be expressed as

EDcme = IPome — 2fe(ecme = 0). (25)

Minimization of the cost function FDcyg leads to the fol-
lowing algorithm (this is referred to as MED-CMA in this pa-
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Fig. 2. MSE convergence performance in CH1.

per).

1
Wi =Wy - HMED-CME 3753

k k
Y S Gullul® — 1yl
i=k—N+1j=k—N+1
wal? =l ) X5 - 3 X3)
k
— 2N z Golysl® — Ra)(Ra — lya*)yiX? |
g g N 41
(26)

From the aspect of implementation, MEE-CME in (24) and
MED-CME in (26) are computationally cumbersome because of
the complexity of O(NN?), whereas the implementation of MCC-
CME in (22) requires only O(N). From the aspect of accuracy,
there is a difference in the kernel size o between MCC-CME and
MED-CME. The kernel size in the information potential  Poyg
of MED-CME is ov/2, whereas the kernel size in felecue =
0) of MCC-CME is o. The kernel size usually determines the
accuracy of the solution [12]. A small kernel size implies a small
extent of overlapping in Parzen PDF estimation, which, in turn,
implies that the desired solution is very near the optimum point.
From this point of view, MCC-CME can be expected to show
a higher performance when compared to MED-CME or MEE-
CME.

IV. RESULTS AND DISCUSSION

In this section, we present and discuss the simulation re-
sults that illustrate the comparative performance of the proposed
MCC-CME and MED-CME versus the CMA for blind equaliza-
tion. They are studied for the three channel models in {11]. The
transfer functions of each of the channel models are

CHI: Hy(2z) = 0.26 + 0.932~! + 0.26272,
CH2: Ha(2) = 0.304+ 0.90327" + 0.30422,

CH3: H3(2) = 0.389 4+ 0.835271 +0.389:72.  (27)
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Fig. 4. MSE convergence performance in CH2.

These channel models are typical multipath channel models,
and they result in severe inter-symbol interference. Especially
in terms of spectral characteristics, the channel model 3, CH3,
shows the worst spectral nulls. ’

The number of weights in the linear TDL equalizer structure
is set to 11. For the worst channel, CH3, the number of weights
is 31. The channel noise for MSE convergence performance is
zero mean white Gaussian with a variance of 0.001. As measures
of equalizer performance, we use MSE convergence, probability
densities for errors and error rate versus signal to noise ratio
(SNR).

The four-level (M = 4) random signal {-3,—1,1,3} is
transmitted to the channel. The convergence parameters of the
CMA that show the least steady-state MSE are 0.00001,
0.000005, and 0.0000007 for CH1, CH2, and CH3, respectively.
We use a common data-block size of N = 20 for the ITL-type
blind algorithms, For MED-CME, a kernel size of 0 = 6.0 and
the convergence parameter yyvep-cMe = 0.03 are used. For
MCC-CME, a kernel size of 0 = 6.0 and the convergence pa-
rameter pycc—oMe = 0.03 are used. The parameters for both
the ITL algorithms are common for all the three channel models
(CH1, CH2, and CH3).

As discussed previously, MEE-CME loses the information of
the constant modulus Rjy. In all the three channel models, MEE-
CME showed ill-convergence. The MSE convergence perfor-
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Fig. 5. Probability density for errors in CH2.
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Fig. 6. Error-rate performance comparison for CH1 and CH2.

mance, error-PDF, and BER performance for CH1 are shown in
Figs. 2-4, respectively. The MSE performance in Fig. 2 shows
that the proposed MCC-CME and MED-CME have a slightly
enhanced performance when compared to the CMA. From the
error PDF estimates in Fig. 3, the error distribution of MCC-
CME is shown to be more concentrated around zero. In the
channel model, CH2, the CMA shows a significant performance
degradation in Fig. 4. On the other hand, the steady-state error-
performance of MCC-CME and MED-CME is similar to that in
CHI. From these results, the ITL-type algorithms can be consid-
ered to be relatively insensitive to channel variations when com-
pared to the CMA based on the MSE criterion. Fig. 5 depicts
the estimated probability densities of the algorithms in CH2.

The differences in the performance of the algorithms in CH2
are more prominent. The error values of the CMA do not ap-
pear to be concentrated around zero, whereas the distribution
from MCC-CME and MED-CME is still concentrated around
zero. In particular, MCC-CME shows a superior error-PDF per-
formance. In order to show the merits of the blind algorithms
that are based on the CME and ITL, we compare and present the
error rate performance for CH1 and CH2 in Fig. 6.

In terms of the error rate performance for CH1, MCC-CME
shows a performance enhancement of 1 dB when compared to
MED-CME and a performance enhancement of approximately
2 dB when compared to the CMA for an error rate of 1076, In
the case of CH2, the CMA shows a significant degradation in

—&— CMA
—O— MED-CME
—&— MCC-CME

-5 5 r s 5§11 T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of samples

Fig. 7. MSE convergence performance in CH3.
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Fig. 8. Error-rate performance comparison for CH3.

error rate performance. However, MCC-CME and MED-CME
still show a good error rate performance and the difference of
1 dB in performance is still maintained. For the worst channel
model, CH3, which exhibits spectral nulls, the CMA shows un-
satisfying performance and the minimum MSE of the algorithm
does not fall below —6 dB in Fig. 7. On the other hand, the
MSE of MED-CME converges to —12 dB and the MSE of the
proposed MCC-CME reaches to less than —14 dB. In Fig. §, the
error rate performance for CH3 is compared, and the error rate
of the CMA is found to be above 0.2. However, MED-CME and
MCC-CME show enhanced error performance, their error rates
being less than 0.05 and 0.03, respectively.

In order to investigate the effect of the kernel size on the
equalizer performance, the minimum MSE is plotted for differ-
ent kernel sizes ranging from 0.5 to 15 for CH2 in Fig. 9. The
figure shows that the kernel size chosen for our simulation (6.0)
corresponds to the lowest steady-state MSE performance.

V. CONCLUSION

In this paper, a new approach to blind equalization that is
based on maximizing the concentration of CMEs near zero is
proposed. The derivation of the proposed method is different
from that of the MCC criterion that maximizes the correntropy
between desired symbols and output symbols. The cost func-
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Fig. 9. Minimum MSE versus kernel sizes for the proposed method.

tion of the proposed algorithm is to maximize the probability
that the equalizer output power is equal to the constant modu-
lus of the transmitted symbols. Two blind ITL algorithms based
on CME signals are also introduced: one for minimizing the Eu-
clidean PDF distance (MED-CME) and the other for minimizing
the CME entropy. It is found that the method of minimizing the
error entropy based on the CME (MEE-CME) loses the constant
modulus information and shows ill-convergence in the simula-
tion environments. This result indicates that MEE-CME cannot
be used in blind equalization because of the absence of the con-
stant modulus information.

For a data block size of N in the Parzen window method,
MEE-CME and MED-CME are computationally cumbersome
because of the O(N?) complexity; however, MCC-CME re-
quires only O(N). In the case of the kernel size, it is found
that the kernel size in MED-CME is ov/2, whereas the kernel
size in MCC-CME is 0. Due partly to the difference in the ker-
nel sizes, MCC-CME shows enhanced performance in the sim-
ulation. Further, MCC-CME and MED-CME, which are both
based on ITL, utilize higher order information contained in the
data, instead of only using second-order information, as in the
case of the MSE criterion. This results in improved simulation
performance in terms of convergence speed, error distribution,
and error rate versus SNR curves when compared to the CMA,
which is based on MSE. These results indicate that the proposed
MCC-CME is a successful candidate for use in blind equaliza-
tion systems.
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