Ryu, Gi-Hwan;Yu, Chaelin;Lee, Jun Young;Moon, Seok-Jae
International journal of advanced smart convergence
/
v.11
no.2
/
pp.95-101
/
2022
The development of the 4th industry has increased social media, and the rise of COVID-19 has stimulated non-face-to-face services. People's consumption patterns are also changing a lot due to non-face-to-face services. In this paper, food content keywords are derived through social network-based semantic network analysis, emotions are analyzed, and keywords applied to food recommendation platforms are input. We collected food, influencer, and corona keyword analysis data through Textom. A lot of research has been done through online reviews of existing influencer content. However, there is a lack of research on keyword sentiment analysis provided by influencers rather than consumers and research perspectives. This paper uploads language and topics derived through online reviews of existing publications and subscribers, and goes beyond the limits used in marketing methods. By analyzing keywords that influencers suggest when uploading content, you can apply data that applies them to food recommendation platforms and applications.
International Journal of Internet, Broadcasting and Communication
/
v.16
no.2
/
pp.179-184
/
2024
Franchise are now a red ocean in Food industry and they need to find other options to appeal for their product, the uprising content, food tech. The franchises are working on R&D to help franchisees with the operations. Through this paper, we analyze the franchise interest on food tech and to help find the necessity of development for franchisees who are in needs with hand, not of human, but of technology. Using Textom, a big data analysis tool, "franchise" and "food tech" were selected as keywords, and search frequency information of Naver and Daum was collected for a year from 01 January, 2023 to 31 December, 2023, and data preprocessing was conducted based on this. For the suitability of the study and more accurate data, data not related to "food tech" was removed through the refining process, and similar keywords were grouped into the same keyword to perform analysis. As a result of the word refining process, a total of 10,049 words were derived, and among them, the top 50 keywords with the highest relevance and search frequency were selected and applied to this study. The top 50 keywords derived through word purification were subjected to TF-IDF analysis, visualization analysis using Ucinet6 and NetDraw programs, network analysis between keywords, and cluster analysis between each keyword through Concor analysis. By using big data analysis, it was found out that franchise do have interest on food tech. "technology", "franchise", "robots" showed many interests and keyword "R&D" showed that franchise are keen on developing food tech to seize competitiveness in Franchise Industry.
As the mobile market expands, a variety of platforms are available to provide multimodal media content. Multimodal media content contains heterogeneous data, accordingly, user requires much time and effort to select preferred content. Therefore, in this paper we propose multimodal media content classification using keyword weighting for recommendation. The proposed method extracts keyword that best represent contents through keyword weighting in text data of multimodal media contents. Based on the extracted data, genre class with subclass are generated and classify appropriate multimodal media contents. In addition, the user's preference evaluation is performed for personalized recommendation, and multimodal content is recommended based on the result of the user's content preference analysis. The performance evaluation verifies that it is superiority of recommendation results through the accuracy and satisfaction. The recommendation accuracy is 74.62% and the satisfaction rate is 69.1%, because it is recommended considering the user's favorite the keyword as well as the genre.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.52-57
/
2022
In this study, keywords from representative online portal sites such as Naver, Google, and Youtube were collected based on text mining analysis technique using Textom to check the changes in metqaverse after COVID-19. before Corona, it was confirmed that social media platforms such as Kakao Talk, Facebook, and Twitter were mentioned, and among the four metaverse, consumer awareness was still concentrated in the field of life logging. However, after Corona, keywords from Roblox, Fortnite, and Geppetto appeared, and keywords such as Universe, Space, Meta, and the world appeared, so Metaverse was recognized as a virtual world. As a result, it was confirmed that consumer perception changed from the life logging of Metaverse to the mirror world. Third, keywords such as cryptocurrency, cryptocurrency, coin, and exchange appeared before Corona, and the word frequency ranking for blockchain, which is an underlying technology, was high, but after Corona, the word frequency ranking fell significantly as mentioned above.
LEE, JINHO;KIM, AE SOOK;Hwang, Chi-Gon;Ryu, Gi Hwan
International Journal of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.41-46
/
2022
The purpose of this study is to confirm and analyze the impact on consumers through big data keyword analysis on weak food. For data collection, web documents, blogs, news, cafes, intellectuals, academic information, and Google Web, news, and Facebook provided by Naver and Daum were used as analysis targets. The data analysis period was set from January 2018 to December 2021. For data collection and analysis, the frequency and matrix of keywords were extracted through Textom, a social matrix site, and the relationship and connection centrality between keywords were analyzed and visualized using the Netdraw function among UCINET6 programs. In addition, CONCOR analysis was conducted to derive clusters for similar keywords. As a result of analyzing yakseon food with keywords, a total of 35,985 cases of collected data were derived. Through this, it was confirmed that medicinal food affects consumers. Furthermore, if a business model is created and developed through yakseon food, it will be possible to lead the popularization of yakseon food.
This paper aims to analyze lexical properties of keyword lists extracted from NLT Old Testament Corpus(NOTC), NLT New Testament Corpus(NNTC), and The NLT Bible Corpus(NBC) and identify that text dispersion keyness is more effective than corpus frequency keyness. For this purpose, NOTC including around 570,000 running words and NNTC about 200,000 were compiled after downloading the files from NLT website of Bible Hub. Scott's (2020) WordSmith 8.0 was utilized to extract keyword lists through comparing a target corpus and a reference corpus. The result demonstrated that text dispersion keyness showed lexical properties of keyword lists better than corpus frequency keyness and that the former was a superior measure for generating optimal keyword lists to fully meet content-generalizability and content distinctiveness.
Journal of information and communication convergence engineering
/
v.19
no.1
/
pp.48-53
/
2021
Herein, we propose a document analysis system that analyzes papers or reports transformed into XML(Extensible Markup Language) format. It reads the document specified by the user, extracts keywords from the document, and compares the frequency of keywords to extract the top-three keywords. It maintains the order of the paragraphs containing the keywords and removes duplicated paragraphs. The frequency of the top-three keywords in the extracted paragraphs is re-verified, and the paragraphs are partitioned into 10 sections. Subsequently, the importance of the relevant areas is calculated and compared. By notifying the user of areas with the highest frequency and areas with higher importance than the average frequency, the user can read only the main content without reading all the contents. In addition, the number of paragraphs extracted through the deep learning model and the number of paragraphs in a section of high importance are predicted.
International Journal of Internet, Broadcasting and Communication
/
v.15
no.3
/
pp.1-7
/
2023
Since the first outbreak of COVID-19 in 2019, it has caused a huge blow to the restaurant industry. However, as social distancing was lifted as of April 2022, the restaurant industry gradually recovered, and as a result, interest in restaurant start-ups increased. Therefore, in this paper, big data analysis was conducted by selecting "restaurant start-up" as a key keyword through social media big data analysis using Textom and then conducting word frequency and CONCOR analysis. The collection period of keywords was selected from May 1, 2022 to May 23, 2023, after the lifting of social distancing due to COVID-19, and based on the analysis, the development of a restaurant start-up consulting chatbot service is proposed.
International journal of advanced smart convergence
/
v.12
no.3
/
pp.68-74
/
2023
The food industry has been hit hard since the first outbreak of COVID-19 in 2019. However, as of April 2022, social distancing has been resolved and the restaurant industry has gradually recovered, interest in restaurant start-ups is increasing. Therefore, in this paper, 'restaurant start-up' was cited as a key keyword through social media big data analysis using TexTom, and word frequency and cone analysis were conducted for big data analysis. The keyword collection period was selected from May 1, 2022, when social distancing due to COVID-19 was lifted, to May 23, 2023, and based on this, a plan to develop chatbot services for restaurant start-ups was proposed. This paper was prepared in consideration of what to consider when starting a restaurant and a chatbot service that allows prospective restaurant founders to receive information more conveniently. Based on these analysis results, we expected to contribute to the process of developing chatbots for prospective restaurant founders in the future
International Journal of Advanced Culture Technology
/
v.12
no.1
/
pp.270-275
/
2024
Introduction. In this study, purpose is to analize the types of golf tourism, inbound or outbound, by using big data and see how movement of industry is being changed and what changes have been made during and after Covid-19 in golf industry. Method Using Textom, a big data analysis tool, "golf tourism" and "Covid-19" were selected as keywords, and search frequency information of Naver and Daum was collected for a year from 1 st January, 2023 to 31st December, 2023, and data preprocessing was conducted based on this. For the suitability of the study and more accurate data, data not related to "golf tourism" was removed through the refining process, and similar keywords were grouped into the same keyword to perform analysis. As a result of the word refining process, top 36 keywords with the highest relevance and search frequency were selected and applied to this study. The top 36 keywords derived through word purification were subjected to TF-IDF analysis, visualization analysis using Ucinet6 and NetDraw programs, network analysis between keywords, and cluster analysis between each keyword through Concor analysis. Results By using big data analysis, it was found out option of oversea golf tourism is affecting on inbound golf travel. "Golf", "Tourism", "Vietnam", "Thailand" showed high frequencies, which proves that oversea golf tour is now the re-coming trends.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.