• Title/Summary/Keyword: Conventional Polymerase Chain Reaction

Search Result 125, Processing Time 0.026 seconds

An improvement of real-time polymerase chain reaction system based on probe modification is required for accurate detection of African swine fever virus in clinical samples in Vietnam

  • Tran, Ha Thi Thanh;Dang, Anh Kieu;Ly, Duc Viet;Vu, Hao Thi;Hoang, Tuan Van;Nguyen, Chinh Thi;Chu, Nhu Thi;Nguyen, Vinh The;Nguyen, Huyen Thi;Truong, Anh Duc;Pham, Ngoc Thi;Dang, Hoang Vu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1683-1690
    • /
    • 2020
  • Objective: The rapid and reliable detection of the African swine fever virus (ASFV) plays an important role in emergency control and preventive measures of ASF. Some methods have been recommended by FAO/OIE to detect ASFV in clinical samples, including realtime polymerase chain reaction (PCR). However, mismatches in primer and probe binding regions may cause a false-negative result. Here, a slight modification in probe sequence has been conducted to improve the qualification of real-time PCR based on World Organization for Animal Health (OIE) protocol for accurate detection of ASFV in field samples in Vietnam. Methods: Seven positive confirmed samples (four samples have no mismatch, and three samples contained one mutation in probe binding sites) were used to establish novel real-time PCR with slightly modified probe (Y = C or T) in comparison with original probe recommended by OIE. Results: Both real-time PCRs using the OIE-recommended probe and novel modified probe can detect ASFV in clinical samples without mismatch in probe binding site. A high correlation of cycle quantification (Cq) values was observed in which Cq values obtained from both probes arranged from 22 to 25, suggesting that modified probe sequence does not impede the qualification of real-time PCR to detect ASFV in clinical samples. However, the samples with one mutation in probe binding sites were ASFV negative with OIE recommended probe but positive with our modified probe (Cq value ranked between 33.12-35.78). Conclusion: We demonstrated for the first time that a mismatch in probe binding regions caused a false negative result by OIE recommended real-time PCR, and a slightly modified probe is required to enhance the sensitivity and obtain an ASF accurate diagnosis in field samples in Vietnam.

Clinical evaluation of a rapid diagnostic test kit for detection of canine coronavirus

  • Yoon, Seung-Jae;Seo, Kyoung-Won;Song, Kun-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.1
    • /
    • pp.27-31
    • /
    • 2018
  • Canine coronavirus is a single-stranded RNA virus that causes enteritis in dogs of any age. Coronaviral enteritis is seldom definitively diagnosed, since it is usually much less severe than many other types of enteritis and is self-limiting. Conventional diagnostics for the canine coronaviral enteritis such as polymerase chain reaction (PCR), virus isolation, and electron microscopic examination are inappropriate for small animal clinics due to the complicated experimental processes involved. Therefore, a commercially available lateral flow test kit based on chromatographic immunoassay techniques was tested to evaluate its performance as a first-line diagnostic test kit that could be used in clinics. The coronavirus antigen test kit detected canine coronavirus-infected dogs with 93.1% sensitivity and 97.5% specificity. The detection limit of the test kit was between $1.97{\times}10^4/mL$ and $9.85{\times}10^3/mL$ for samples with a 2-fold serial dilution from $1.25{\times}10^6\;TCID_{50}$ ($TCID_{50}$, 50% tissue culture infectious dose). Additionally, the test kit had no cross-reactivity with canine parvovirus, distemper virus, or Escherichia coli. Overall, the commercially available test kit showed good diagnostic performance in a clinical setting, with results similar to those from PCR, confirming their potential for convenient and accurate use in small animal clinics.

A Multiplex PCR Method for the Detection of Genetically Modified Alfalfa (Medicago sativa L.) and Analysis of Feral Alfalfa in South Korea

  • Choi, Wonkyun;Kim, Il Ryong;Lim, Hye Song;Lee, Jung Ro
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.83-89
    • /
    • 2020
  • Methods for detecting the presence of genetically modified (GM) crops are evolving to comply with legislation and to enhance monitoring by biotechnology companies and regulators. In order to cover a broad range of detection methods for a new GM crop, conventional multiplex PCR methods are required. Based on the genetic information on three GM alfalfa varieties (J101, J163, and KK179), which were recently approved in South Korea, we developed a fast, reliable, and highly specific multiplex polymerase chain reaction (PCR) method with basic PCR equipment and inexpensive reagents. To validate and verify the newly developed multiplex PCR method, we applied a limit of detection assay and random reference material analysis. We also monitored the unintentional environmental release of GM alfalfa in South Korea by performing the multiplex PCR analysis with 91 feral alfalfa specimens collected from 2000 to 2018. Our methodology is a sensitive, simple, quick, and inexpensive tool for detecting and identifying three GM alfalfa varieties.

Analysis and Expression of Cloning of rpoB Gene of Drug-Resistant Mycobacterium tuberculosis (약제내성 Mycobacterium tuberculosis의 rpoB 유전자 분석과 클로닝 발현)

  • Choi, Eun Kyeong;Kweon, Tae-Dong;Bai, Sun-Joon;Cho, Hae Sun;Hong, Seong-Karp
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.1005-1009
    • /
    • 2013
  • Using DNA sequencing method, we analyzed mutations of rpoB (RNA polymerase beta subunit) rifampin-resistant Mycobaterium tuberculosis strains which were identified by conventional test at Masan National Hospital and The Korean Institute of Tuberculosis. Though it has been reported different mutations of rpoB region of rifampin-resistant M. tuberculosis strains in the south of Korea, it is not confirmed whether these mutations of rpoB region actually express rifampin resistance through experiment. We confirmed experimentally these mutations of rpoB region of M. tuberculosis strains induced rifampin-resistance through ampified rpoB by polymerase chain reaction (PCR) and cloning of mutant rpoB into rifampin sensitive-M. tuberculosis strain.

The Polymerase Chain Reaction in Diagnosis of Small B-Cell Non-Hodgkin Lymphomas

  • Antoro, Ester Lianawati;Dwianingsih, Ery Kus;Indrawati, Indrawati;Triningsih, FX Ediati;Harijadi, Harijadi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.491-495
    • /
    • 2016
  • Background: Small B-cell non-Hodgkins lymphoma (NHL) is difficult to be distinguished from non-neoplastic reactive processes using conventional haematoxylin-eosin (HE) staining due to different interpretations among pathologists with diagnosis based on morphologic features. Ancillary examinations such as immunohistochemical (IHC) staining are essential. However, negative or doubtful results are still sometimes obtained due to unsatisfactory tissue processing or IHC technique. The polymerase chain reaction (PCR) as a molecular diagnostic technique is very sensitive and specific. Clonality detection of heavy chain immunoglobulin (IgH) gene rearrangement has been widely used to establish diagnosis of B-cell NHL. Aims: To elaborate interobserver variation in small B-cell NHL diagnosis based on morphologic features only and to confirm sensitivity and specificity of the PCR technique as an ancillary method. Materials and Methods: A toptal of 28 samples of small B cell NHL and suspicious lymphoma were interpreted by 3 pathologists in Sardjito General Hospital based on their morphology only. The reliability of assessment and the coefficient of interobserver agreement were calculated by Fleiss kappa statistics. Interpretation results were confirmed with IHC staining (CD20, CD3, Bcl2). PCR was performed to analyze the clonality of IgH gene rearrangement. Results: Interobserver agreement in morphologic evalution of small B cell NHL and chronic lymphadenitis revealed kappa coefficient 0.69 included in the substantial agreement category. The cases were divided into 3 groups based on morphology and IHC results; lymphoma, reactive process and undetermined group. PCR analysis showed 90% sensitivity and 60% specificity. Conclusions: The present study revealed a substantial agreement among pathologists in small B-cell NHL diagnosis. For difficult cases, PCR is useful as complementary method to morphologic and IHC examinations to establish definitive diagnosis.

Identification of Mycobacterium tuberculosis in Pleural Effusion by Polymerase Chain Reaction(PCR) (흉막 삼출액에서 중합효소 연쇄반응(PCR)을 이용한 M. tuberculosis의 검출)

  • Kim, Sun-Taec;Gang, Chang Woon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.5
    • /
    • pp.695-702
    • /
    • 1995
  • Background: Since polymerase chain reaction(PCR) was devised by Saiki in 1985, it has been used extensively in various fields of molecular biology. Clinically, PCR is especially useful in situation when microbiological or serological diagnosis is limited by scanty amount of causative agents. Thus, PCR can provide rapid and sensitive way of detecting M. tuberculosis in tuberculosis pleurisy which is diagnosed in only about 60 % of cases by conventional method. Method: To evaluate the diagnostic usefulness of PCR in tuberculosis pleurisy, The results of PCR was compared with those of conventional method, including pleural biopsy. The pleural effusion fluid was collected from 7 proven patients, 7 clinically suspected patients and control group(7 patients with malignant effusion). We extracted DNA from pleural fluid by modified method of Eisennach method(1991). The amplification target for PCR was 123 base pair DNA, a part of IS6110. Result: 1) Sensitivity of PCR: We detected upto 50fg DNA. 2) In patients with pleural effusion of proven tuberculosis, the positive rate of PCR was 85.7%(6/7). In patients with pleural effusion of clinically suspected tuberculosis, the positive rate was 71.5%(5/7). In control group, positive rate was 0%(0/7). Conclusion: We concluded that PCR method could be a very rapid, sensitive and specific one for diagnosis of M tuberculosis in pleural effusion. Further studies should be followed for the development of easier method.

  • PDF

Rapid and sensitive detection of Salmonella species targeting the hilA gene using a loop-mediated isothermal amplification assay

  • Chu, Jiyon;Shin, Juyoun;Kang, Shinseok;Shin, Sun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.30.1-30.8
    • /
    • 2021
  • Salmonella species are among the major pathogens that cause foodborne illness outbreaks. In this study, we aimed to develop a loop-mediated isothermal amplification (LAMP) assay for the rapid and sensitive detection of Salmonella species. We designed LAMP primers targeting the hilA gene as a universal marker of Salmonella species. A total of seven Salmonella species strains and 11 non-Salmonella pathogen strains from eight different genera were used in this study. All Salmonella strains showed positive amplification signals with the Salmonella LAMP assay; however, there was no non-specific amplification signal for the non-Salmonella strains. The detection limit was 100 femtograms (20 copies per reaction), which was ~1,000 times more sensitive than the detection limits of the conventional polymerase chain reaction (PCR) assay (100 pg). The reaction time for a positive amplification signal was less than 20 minutes, which was less than one-third the time taken while using conventional PCR. In conclusion, our Salmonella LAMP assay accurately detected Salmonella species with a higher degree of sensitivity and greater rapidity than the conventional PCR assay, and it may be suitable for point-of-care testing in the field.

Development of Quantitative Real-Time PCR Primers for Detection of Streptococcus sobrinus

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.149-154
    • /
    • 2016
  • The purpose of this study was to develop Streptococcus sobrinus-specific qPCR primers based on the nucleotide sequence of the RNA polymerase ${\beta}-subunit$ gene (rpoB). The specificity of the primers was determined by conventional polymerase chain reaction (PCR) with 12 strains of S. sobrinus and 50 strains (50 species) of non-S. sobrinus bacteria. The sensitivity of the primers was determined by quantitative real-time PCR (qPCR) with serial dilutions of the purified genomic DNAs (40 ng to 4 fg) of S. sobrinus ATCC $33478^T$. The specificity data showed that the S. sobrinus-specific qPCR primers (RTSsob-F4/RTSsob-R4) detected only the genomic DNAs of S. sobrinus strains with a detection limit of up to 4 fg of S. sobrinus genomic DNA. Our results suggest that the RTSsob-F4/RTSsob-R4 primers are useful in detecting S. sobrinus with high sensitivity and specificity for epidemiological studies of dental caries..

Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid and Sensitive Detection of Barley Yellow Dwarf Virus in Oat

  • Kim, Na-Kyeong;Kim, Sang-Min;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.497-502
    • /
    • 2020
  • Barley yellow dwarf virus (BYDV) is an economically important plant pathogen that causes stunted growth, delayed heading, leaf yellowing, and purple leaf tip, thereby reducing the yields of cereal crops worldwide. In the present study, a reverse transcription recombinase polymerase amplification (RT-RPA) assay was developed for the detection of BYDV in oat leaf samples. The RT-RPA assay involved incubation at an isothermal temperature (42℃) and could be performed rapidly in 5 min. In addition, no cross-reactivity was observed to occur with other cereal-infecting viruses, and the method was 100 times more sensitive than conventional reverse transcription polymerase chain reaction. Furthermore, the assay was validated for the detection of BYDV in both field-collected oat leaves and viruliferous aphids. Thus, the RT-RPA assay developed in the present study represents a simple, rapid, sensitive, and reliable method for detecting BYDV in oats.

Detection of Apple Scar Skin Viroid by Reverse Transcription Recombinase Polymerase Amplification Assay

  • Kim, Na-Kyeong;Lee, Hyo-Jeong;Ryu, Tae-Ho;Cho, In-Sook;Ju, Ho-Jong;Jeong, Rae-Dong
    • Research in Plant Disease
    • /
    • v.27 no.2
    • /
    • pp.79-83
    • /
    • 2021
  • The aim of the present study was to develop a sensitive and specific detection method for the rapid detection of apple scar skin viroid (ASSVd) in apple leaves. The resulting reverse transcription recombinase polymerase amplification (RT-RPA) assay can be completed in 10 min at 42℃, is 10 times more sensitive than conventional reverse transcription polymerase chain reaction, and can specifically amplify ASSVd without any cross-reactivity with other common apple viruses, including apple stem grooving virus, apple stem pitting virus, and apple chlorotic leaf spot virus. The reliability of the RT-RPA assay was assessed, and the findings suggested that it can be successfully utilized to detect ASSVd in field-collected samples. The RT-RPA assay developed in the present study provides a potentially valuable means for improving the detection of ASSVd in viroid-free certification programs, especially in resource-limited conditions.