• 제목/요약/키워드: Convection Gas

검색결과 199건 처리시간 0.024초

Influence of thermo-physical properties on solutal convection by physical vapor transport of Hg2Cl2-N2 system: Part I - solutal convection

  • Kim, Geug-Tae;Kim, Young-Joo
    • 한국결정성장학회지
    • /
    • 제20권3호
    • /
    • pp.125-132
    • /
    • 2010
  • For typical governing dimensionless parameters of Ar = 5, Pr = 1.16, Le = 0.14, Pe = 3.57, Cv = 1.02, $Gr_s=2.65{\times}10^6$, the effects of thermo physical properties such as a molecular weight, a binary diffusivity coefficient, a partial pressure of component B on solutally buoyancy-driven convection (solutal Grashof number $Gr_s=2.65{\times}10^6$) are theoretically investigated for further understanding and insight into an essence of solutal convection occurring in the vapor phase during the physical vapor transport of a $Hg_2Cl_2-N_2$ system. The solutally buoyancy-driven convection is significantly affected by any significant disparity in the molecular weight of the crystal components and the impurity gas of nitrogen. The solutal convection in a vertical orientation is found to be more suppressed than a tenth reduction of gravitational accelerations in a horizontal orientation. For crystal growth parameters under consideration, the greater uniformity in the growth rate is obtained for either solutal convection mode in a vertical orientation or thermal convection mode in horizontal geometry. The growth rate is also found to be first order exponentially decayed for $10{\leq}P_B{\leq}200$ Torr.

열유동을 고려한 GIS 모선의 온도상승 예측 (Temperature Rise Prediction of GIS Bus Bar Considering Thermal Flow)

  • 김중경;오년호;이지연;한성진
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.742-747
    • /
    • 2009
  • Many works on the temperature distribution of power apparatus have usually done by coupled magneto-thermal analysis. Such a method can not consider the internal gas or oil flow in the power apparatus such as gas insulated switchgear, GIS bus bar, and power transformer. Moreover it can not show the internal temperature distribution of the power apparatus exactly. This paper proposes a coupled magneto-thermal-flow analysis considering Navier-Stokes equations. The convection heat transfer coefficient is calculated analytically by applying Nusselt number for natural convection and is applied to the boundary condition of proposed method. Temperature distribution of the GIS bus bar model considering thermal flow is obtained by the proposed method and shows good agreement with the experimental data.

고분자전해질 연료전지의 환원극 블록과 공기 유량 영향에 대한 전산 해석 연구 (A Numerical Study of Cathode Block and Air Flow Rate Effect on PEMFC Performance)

  • 조성훈;김준범
    • 공업화학
    • /
    • 제33권1호
    • /
    • pp.96-102
    • /
    • 2022
  • 고분자전해질막 연료전지의 반응물인 수소와 산소는 기체 상태이므로, 반응물이 원활히 전달될수록 작동 전압의 손실을 줄일 수 있다. 높은 전류밀도 영역에서 산소 물질 전달이 전압 손실을 좌우하므로, 환원극 유로의 형상 변경에 대한 연구들이 진행되어 왔다. 환원극 유로 형상 중에서 유로를 막는 블록은 반응물을 다공성 매질인 기체확산층으로 강제 대류 하도록 사용되었다. 본 연구에서는 간단한 단 채널의 연료전지 모델에 블록을 배치하였다. 전산 유체역학을 사용하였고, 공기 공급 유량을 달리하였을 때 블록으로 인한 강제 대류 효과가 전압-전류 곡선과 국부 전류 밀도에 대한 영향을 연구하였다. 기체확산층으로의 강제 대류 현상을 통하여 적은 공기 공급 유량으로도 높은 전류 밀도를 얻을 수 있었다. 다수의 블록을 직렬로 배치한 경우에 1개의 블록만 배치한 것보다 강제 대류 효과를 증가시켜 높은 전류밀도를 얻을 수 있었다.

Combined Convection and Radiation in a Tube with Circumferential Fins and Circular Disks

  • Kim, Namjin;Lee, Jaeyong;Taebeom Seo;Kim, Chongbo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1725-1732
    • /
    • 2002
  • Combined convection and radiation heat transfer in a circular tube with circumferential fins and circular disks is investigated for various operating conditions. Using a finite volume technique for steady laminar flow, the governing equations are solved in order to study the flow and temperature fields. The P- 1 approximation and the weighted sum of gray gases model (WSGGM) are used for solving the radiation transport equation. The results show that the total Nusselt number of combined convection and radiation is higher than that of pure convection. If the temperatures of the combustion gas and the wall in a tube are high, radiation becomes dominant. Therefore, it is necessary to evaluate the effect of radiation on the total heat transfer.

3상 GIS Busbar내 자연대류에 대한 수치해석적 연구 (A Numerical Study on Natural Convection in A Three-Phase GIS Busbar)

  • 왕양양;한성진;김중경;강상모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.107-108
    • /
    • 2008
  • The temperature rise of GIS (Gas Insulated Switchgear) busbar system is a vital factor that affects its performance. In this paper, a two-dimensional model is presented by commercial code CFX11 for the evaluation of natural convection in the busbar system. In the model, SF6 (Sulfur Hexafluoride) is used to insulate the high voltage device and improves the heat transfer rate. The power losses of a busbar calculated by the magnetic field analysis are used as the input data to predict the temperature rise by the nature convection analysis. The heat-transfer coefficients on the boundaries are analytically calculated by applying the Nusselt number considering material property and model geometry for the natural convection. The temperatures of the tank and conductors from CFX simulation and the experiment were compared. The results show a good agreement. In the future, we will calculate the 3-D model and try to reduce the temperature by adjusting some dimensional parameters.

  • PDF

벽면에서의 입자 고찰에 의한 열전달 수치 모델 (Numerical Modeling of Heat Transfer Due to Particle Impact on a Wall)

  • 권오붕
    • 수산해양기술연구
    • /
    • 제31권3호
    • /
    • pp.296-305
    • /
    • 1995
  • 보일러 및 연소로 등에서의 부유체 환경에서 입자와 벽면 사이의 열전달 현상을 규명하기 위한 수치적인 모델링을 행하였다. 본 연구에서는 벽면에 수직 충돌하는 입자에 의한 열전달 현상을 알아보기 위해 2차원 모델을 사용하였다. 입자표면에서 단열된 경계조건과 등온의 경계조건을 사용한 결과를 비교함으로써, 입자가 벽면에 충돌할 때 유체를 매개로한 전도와 입자에 의해 야기된 대류 현상을 비교할 수 있었다. 계산 결과, 입자가 벽면에 충돌하기 직전에는 입자 크기의 반정도의 거리에 도달할 때까지는 입자의 영향이 별로 없고, 충돌하고 난 후에 영향이 많았다. 또한, Pe 수가 작을 때는 유체를 매개로 한 전도가 지배적이며, Pe 수가 증가할수록 야기된 대류의 효과가 점차 증가하였다

  • PDF

밀폐공간내 화재에 의해 생성된 연소가스 분석 및 유동에 관한 연구 (A study on the Analysis of Combustion Gas and its Flow Induced by Fire in an Enclosure)

  • 추병길;조성곤
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.77-93
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened, it is divided by a vertical baffle projecting from ceiling. The solution procedure Includes the standard k- $\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM ) is used for the calculation of radiative heat transfer equation. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The velocity vectors, streamlines, and isothermal lines are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer In the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire.

  • PDF

직접접촉식 열교환기내에서 물과 배기가스의 직접접촉에 의한 열 및 물질전달 (Heat and Mass Transfer between Hot Waste Gas and Cold Water in a Direct Contact Heat Exchanger)

  • 이금배
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1171-1178
    • /
    • 1992
  • 본 연구에서는 직접접촉식 열교환기를 이용한 실험을 통하여 열교환기 설계에 가장 중요한 열교환기 단위 체적당 총괄 열전달 계수를 시스템의 작동조건에 따라 구 하여 실제 설계자료로 이용하는 데 그 목적이 있다.

The Importance of Corrosion Control and Protection Technology in the Refinery

  • Kim, Byong Mu;Oh, Sung Lyong
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.112-119
    • /
    • 2007
  • This paper presents the importance of corrosion control and protection technology with a real case study of heater tube rupture damaged by High temperature H2S-H2 corrosion in the refinery. The heater was operated at the Hydrocracking unit and the operation temperature and pressure was $340^{\circ}C$ and $18kg/cm^{3}$ respectively. Top side of the convection tube was thinned by high temperature hydrogen sulfide and hydrogen gas as a uniform corrosion and finally ruptured under operation pressure. Damaged area (Convection tube zone) was blocked by protection wall, so it was impossible to inspect with conventional nondestructive examination. Instead the elbow area which is out of the protection wall was inspected regularly to evaluate the corrosion rate of convection tube indirectly. However the operation temperature and the phase of the process stream was different between inside the chamber and outside the chamber. As a result, it caused severe corrosion to the horizontal convection tube inside the chamber comparing to the elbow outside the chamber. Finally convection tube was corroded more rapidly than the elbow and ruptured after 13 years operation. Because of the rupture, the heater was totally burned and the operation was stopped for 3 months until it has been reconstructed. To prevent this kind of corrosion problem and accident, corrosion control should be strengthened and protection technology should be improved.

Analysis of forced convection in the HTTU experiment using numerical codes

  • M.C. Potgieter;C.G. du Toit
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.959-965
    • /
    • 2024
  • The High Temperature Test Unit (HTTU) was an experimental set-up to conduct separate and integral effects tests of the Pebble Bed Modular Reactor (PBMR) core. The annular core consisted of a randomly packed bed of uniform spheres. Natural convection tests using both nitrogen and helium, and forced convection tests using nitrogen, were conducted. The maximum material temperature achieved during forced convection testing was 1200 ℃. This paper presents the numerical analysis of the flow and temperature distribution for a forced convection test using 3D CFD as well as a 1D systems-CFD computer code. Several modelling approaches are possible, ranging from a fully explicit to a semi-implicit method that relies on correlations of their associated phenomena. For the comparison between codes, the analysis was performed using a porous media approach, where the conduction and radiative heat transfer were lumped together as an effective thermal conductivity and the convective heat transfer was correlated between the solid and gas phases. The results from both codes were validated against the experimental measurements. Favourable results were obtained, in particular by the systems-CFD code with minimal computational and time requirements.