DOI QR코드

DOI QR Code

Analysis of forced convection in the HTTU experiment using numerical codes

  • M.C. Potgieter (Unit for Energy and Technology Systems, North-West University) ;
  • C.G. du Toit (Unit for Energy and Technology Systems, North-West University)
  • Received : 2023.06.30
  • Accepted : 2023.11.23
  • Published : 2024.03.25

Abstract

The High Temperature Test Unit (HTTU) was an experimental set-up to conduct separate and integral effects tests of the Pebble Bed Modular Reactor (PBMR) core. The annular core consisted of a randomly packed bed of uniform spheres. Natural convection tests using both nitrogen and helium, and forced convection tests using nitrogen, were conducted. The maximum material temperature achieved during forced convection testing was 1200 ℃. This paper presents the numerical analysis of the flow and temperature distribution for a forced convection test using 3D CFD as well as a 1D systems-CFD computer code. Several modelling approaches are possible, ranging from a fully explicit to a semi-implicit method that relies on correlations of their associated phenomena. For the comparison between codes, the analysis was performed using a porous media approach, where the conduction and radiative heat transfer were lumped together as an effective thermal conductivity and the convective heat transfer was correlated between the solid and gas phases. The results from both codes were validated against the experimental measurements. Favourable results were obtained, in particular by the systems-CFD code with minimal computational and time requirements.

Keywords

Acknowledgement

The authors wish to thank PBMR (Pty) Ltd. For permission to publish part of the work that was done in collaboration with the North-West University and M-Tech Industrial (Pty) Ltd., as well as the respective authors of the works cited.

References

  1. P.G. Rousseau, M. van Staden, Introduction to the PBMR heat transfer test facility, Nucl. Eng. Des. 238 (2008) 3060-3072, https://doi.org/10.1016/j.nucengdes.2008.02.007. 
  2. P.G. Rousseau, C.G. du Toit, W. van Antwerpen, H. J van Antwerpen, Separate effects tests to determine the effective thermal conductivity in the PBMR HTTU test facility, Nucl. Eng. Des. 271 (2014) 444-458, https://doi.org/10.1016/j.nucengdes.2013.12.015. 
  3. C.G. du Toit, P.G. Rousseau, T.L. Kgame, Separate effects tests to determine the thermal dispersion in structured pebble beds in the PBMR HPTU test facility, Nucl. Eng. Des. 271 (2014) 437-443, https://doi.org/10.1016/j.nucengdes.2013.12.014. 
  4. J.P. van Ravenswaay, G.P. Greyvenstein, W.M.K. van Niekerk, J.T. Labuschagne, Verification and validation of the HTGR systems CFD code Flownex, Nucl. Eng. Des. 236 (5-6) (2006) 491-501, https://doi.org/10.1016/j.nucengdes.2005.11.025. 
  5. M.C. Potgieter, C.G. du Toit, The porosity distribution in the HTTU annular packed bed of spheres, Nucl. Eng. Des. 403 (2023), 112124, https://doi.org/10.1016/j.nucengdes.2022.112124. 
  6. B. Stocker, H. Niessen, Data sets of the SANA experiment, Forschungszentrum, Julich, JUEL 3049 (1997). 
  7. S. Becker, E. Laurien, Three-dimensional numerical simulation of flow and heat transport in high-temperature nuclear reactors, Nucl. Eng. Des. 222 (2003) 189-201, https://doi.org/10.1016/S0029-5493(03)00011-6. 
  8. A.J. Novak, R.W. Carlsen, S. Schunert, P. Balestra, D. Reger, R.N. Slaybaugh, R. C. Martineau, Pronghorn: a multidimensional coarse-mesh application for advanced reactor thermal hydraulics, Nuclear Technology 207 (2021) 1015-1046, https://doi.org/10.1080/00295450.2020.1825307.
  9. C.G. du Toit, P.G. Rousseau, G. P Greyvenstein, W.A. Landman, A systems CFD model of a packed bed high temperature gas-cooled nuclear reactor, International Journal of Thermal Sciences 45 (2006) 70-85, https://doi.org/10.1016/j.ijthermalsci.2005.04.010. 
  10. H.S. Lim, H.C. No, GAMMA multidimensional multicomponent mixture analysis to predict air ingress phenomena in an HTGR, Nuclear Science and Engineering 152 (2006) 87-97, https://doi.org/10.13182/NSE06-5. 
  11. H. Wu, N. Gui, X. Yang, J. Tu, S. Jiang, Parameter analysis and wall effect of radiative heat transfer for CFD-DEM simulation in nuclear packed pebble bed, Experimental and Computational Multiphase Flow 3 (2021) 250-257, https://doi.org/10.1007/s42757-020-0058-2. 
  12. P.G. Rousseau, C.G. du Toit, H.J. van Antwerpen, CFD and systems thermal-hydraulic analysis in the design and safety assessment of high-temperature reactors, in: Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment, Woodhead Publishing, Duxford, 2019, pp. 755-800, https://doi.org/10.1016/B978-0-08-102337-2.00010-9. 
  13. J.J. Janse van Rensburg, M. Kleingeld, An integral CFD approach for the thermal simulation of the PBMR Reactor Unit, Nucl. Eng. Des. 241 (2011) 3130-3141, https://doi.org/10.1016/j.nucengdes.2011.05.034. 
  14. Flownex Simulation Environment, Flownex 2022 Update 1 Library Manual, M-Tech Industrial (Pty) Ltd, 2022 (Chapter 15). 
  15. Siemens Digital Industries Software, Simcenter STAR-CCM+ User Manual, Theory, Siemens, 2022. 
  16. F. Reitsma, Pebble Bed Gas Cooled Reactors, Elsevier Inc., 2021, https://doi.org/10.1016/B978-0-12-819725-7.00188-4. 
  17. World Nuclear News, China's HTR-PM Reactor Achieves First Criticality, 2021 accessed 29 June 2023), https://www.world-nuclear-news.org/Articles/Chinas-HTR-PM-reactor-achieves-first-criticality. 
  18. C. Ren, X. Yang, H. Jia, Y. Jiang, W. Xiong, Theoretical analysis of effective thermal conductivity for the Chinese HTR-PM heat transfer test facility, Applied Sciences 7 (2017) 76, https://doi.org/10.3390/app7010076. 
  19. Kerntechnischer Ausschuss, Reactor Core Design of High-Temperature Gas-Cooled Reactors, Part 3: Loss of Pressure through Friction in Pebble Bed Cores, Safety Standards of the Nuclear Safety Standards Commission, Salzgitter, 1981, pp. 1-4. KTA 3102.3. 
  20. M. Bahrami, M.M. Yovanovich, J.R. Culham, Effective thermal conductivity of rough spherical packed beds, Int. J. Heat Mass Tran. 49 (2006) 3691-3701, https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.021. 
  21. G. Breitbach, H. Barthels, The radial heat transfer in the high temperature reactor core after failure of the afterheat removal systems, Nuclear Technology 49 (1980) 392-399. 
  22. K. Kugeler, R. Schulten, Hochtemperatur-reaktortechnik HTR, Springer-Verlag, Berlin, 1989. 
  23. Kerntechnischer Ausschuss, Reactor Core Design of High-Temperature Gas-Cooled Reactors, Part 2: Heat Transfer in Spherical Fuel Elements, Safety Standards of the Nuclear Safety Standards Commission, Salzgitter, 1983, pp. 1-3. KTA 3102.2. 
  24. R. Bauer, E.U. Schlunder, Effective radial thermal conductivity of packings in gas flow. Part I. Convective transport coefficient, Int. Chem. Eng. 18 (1978) 181-188. 
  25. H.T.T.U. Pbmr, Forced Convection High Temperature Tests Results, PBMR SOC, Pretoria, 2009, pp. xx-xxx. HTTU002-0059-Rev1. 
  26. M. de Beer, P.G. Rousseau, C.G. du Toit, A review of methods to predict the effective thermal conductivity of packed pebble beds, with emphasis on the near-wall region, Nucl. Eng. Des. 331 (2018) 248-262, https://doi.org/10.1016/j.nucengdes.2018.02.029. 
  27. F. Reitsma, G. Strydom, J.B.M. de Haas, K. Ivanov, B. Tyobeka, R. Mphahlele, T. J. Downar, V. Seker, H.D. Cougar, D.F. Da Cruz, U.E. Sikik, The PBMR steady-state and coupled kinetics core thermal-hydraulics benchmark test problems, Nucl. Eng. Des. 236 (2006) 657-668, https://doi.org/10.1016/j.nucengdes.2005.12.007. 
  28. T. Dudley, W. Bouwer, P. de Villiers, Z. Wang, The Thermal-Hydraulic model for the pebble bed modular reactor (PBMR) plant operator training simulator system, Nucl. Eng. Des. 238 (2008) 3102-3113, https://doi.org/10.1016/j.nucengdes.2007.12.022. 
  29. H. Wu, N. Gui, X. Yang, J. Tu, S. Jiang, Numerical simulation of heat transfer in packed pebble beds: CFD-DEM coupled with particle thermal radiation, Int. J. Heat Mass Tran. 110 (2017) 393-405, https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.035.