• Title/Summary/Keyword: Controller Scheduling

Search Result 194, Processing Time 0.029 seconds

Controller Design for Input-Saturated Linear Systems

  • C., Doojin;P., PooGyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.126-126
    • /
    • 2000
  • In this paper, we provide an approach of controller synthesis for input-saturated linear systems by a linear parameter varying (LPV) framework. Using directly the saturation nonlinearity as scheduling parameters, we propose an LPV-stabilizer with parameter-dependent dynamic state-feedback controller concept. Especially, the synthesis conditions are formulated in terms of linear matrix inequalities (LMIs) that can be solved very efficiency.

  • PDF

East H$_{\infty}$ Gain Scheduling for Uncertain Nonlinear Systems

  • Lee, Seon-Ho;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.362-366
    • /
    • 1998
  • This paper proposes a fast H$\sub$$\infty$/ gain scheduled controller that stabilizes the uncertain nonlinear system with exogenous signals. The controller is constructed at a distinct and fixed value of exogenous signals using H$\sub$$\infty$/ syn-thesis methodology. Then the constructed controller set is switched for the wide range of variation of exogenous signals. Using the derivative gain, the number of constructed and engaged controllers for the fast varying exogenous signal is reduced.

  • PDF

Transient Response Improvement of Multiple Model/Controller IMC Using Recurrent Neural Networks (재귀신경망을 이용한 다중모델/제어기 IMC의 과도 응답 개선)

  • O, Won-Geun;Jo, Seong-Eon;So, Ji-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.582-588
    • /
    • 2001
  • The Multiple Model/Controller IMC(MMC-IMC) is a model-based control method which uses a set of model/controller pairs rather than a single model/controller to handle all possible operating conditions in the IMC control structure. During operation, one model/controller pair that best fit, for current plant situation is chosen by the switching algorithm. The major drawback of the switching controller is the bad transient performance due to the model error and the use fo linear controller for nonlinear plants. In this paper, we propose a method that transient response of the MMC-IMC using two recurrent neural networks. Simulation result shows that the proposed method represents better performance than the usual MMC-IMC`s.

  • PDF

The Seek Control Design with Gain-Scheduling in Hard Disk Drives

  • Hwang, Eun-Ju;Hyun, Chang-Ho;Park, Mig-Non
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • The increased disk rotational velocity to improve the data transfer rate has raised up many serious problems in its servo control system which should control the position and velocity of a spot relative to a rotating disk. This paper proposes gain-scheduling-based track-seek control for single stage actuator of hard disk drives. Gain scheduling is a technique that can extend the validity of the linearization approach to a range of operating points and one of the most popular approaches to nonlinear control design. The proposed method schedules controller gains to improve the transient response and minimize overshoot during the functions of the read/write head positioning servomechanism for the seek control. The validity of the proposed method is demonstrated through stability analysis and simulation results.

Stability and a scheduling method for network-based control systems (네트워크를 이용한 제어 시스템의 안정도 및 스케줄링에 관한 연구)

  • 김용호;권욱현;박홍성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1432-1435
    • /
    • 1996
  • This paper obtains maximum allowable delay bounds for stability of network-based control systems and presents a network scheduling method which makes the network-induced delay be less than the maximum allowable delay bound. The maximum allowable delay bounds are obtained using the Lyapunov theorem. Using the network scheduling method, the bandwidth of a network can be allocated to each node and the sampling period of each sensor and controller can be determined. The presented method can handle three kinds of data (periodic, real-time asynchronous, and non real-time asynchronous data) and guarantee real-time transmissions of real-time synchronous data and periodic data, and possible transmissions of non real-time asynchronous data. The proposed method is shown to be useful by examples in two types of network protocols such as the token control and the central control.

  • PDF

A Study on feedrate Optimization System for Cutting Force Regulation (절삭력 추종을 위한 이송속도 최적화 시스템에 관한 연구)

  • 김성진;정영훈;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.214-222
    • /
    • 2003
  • Studies on the optimization of machining process can be divided into two different approaches: off-line feedrate scheduling and adaptive control. Each approach possesses its respective strong and weak points compared to each other. That is, each system can be complementary to the other. In this regard, a combined system, which is a feedrate control system fur cutting force optimization, was proposed in this paper to make the best of each approach. Experimental results show that the proposed system could overcome the weak points of the off-line feedrate scheduling system and the adaptive control system. In addition, from the figure, it can be confirmed that the off-line feedrate scheduling technique can improve the machining quality and can fulfill its function in the machine tool which has a adaptive controller.

End-to-End Scheduling Method Considering 3-type RT-Data in Distributed Control Systems (분산 제어시스템에서 3가지 형태의 실시간 데이터를 고려하는 양극단 스케줄링 방법)

  • Kim, Hyoung-Yuk;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.311-314
    • /
    • 2003
  • In recent years, distributed control systems(DCS) using fieldbus such as CAN have been applied to process systems but it is very difficult to design the DCS while guaranteeing the given end-to-end constraints such as precedence constraints, time constraints, and periods and priorities of tasks and messages. This paper presents a scheduling method to guarantee the given end-to-end constraints considering aperiodic, periodic and non-real-time message and task simultaneously. The presented scheduling method is the integrated one considering both tasks executed in each node and messages transmitted via the network and is designed to be applied to a general DCS that has multiple loops with several types of constraints, where each loop consists of sensor nodes with multiple sensors, actuator nodes with multiple actuators and controller nodes with multiple tasks.

  • PDF

Gain Scheduled Fuzzy Control on Aircraft Flight Control (게인 스케줄링 퍼지제어의 비행제어에 대한 적용)

  • 홍성경;심규홍;박성수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • This paper describes an approach for synthesizing a Fuzzy Logic Controller(FLC) that combines the benefits of fuzzy logic control and fuzzy logic gain scheduling for the F/A-18 aircraft. Specially, fuzzy rules are utilized on-line to determine the denoralization factor(Κ) of a feedback fuzzy controller based on the dynamic pressure(Q) indicateing the region of the flight envelop the aircraft is operating in. Simulation results demonstrate that the proposed FLC provides excellent compensation for time-varying and/or nonlinear characteristics of the aircraft, and that it also exhibits satisfactory robustness with noisy air data sensors.

A gain scheduling method for the vibration suppression servo controller of articulated robots

  • Lee, Sang-Hun;Yim, Jong-Guk;Hur, Jong-Sung;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2725-2730
    • /
    • 2003
  • In this study we present a vibration controller for articulated robots that has flexible joints modeled as a 2-mass system. Most of articulated robots have time varying load inertias for each axis according to its motion. Moreover, the inertias vary drastically; for the base axis of articulated robots it may vary about 10 times of its minimum value. But, for industrial robots and many mechatronic devices, it is desirable to maintain control performance in spite of load inertia variation. So we propose a control gain adjustment rule considering the time-varying nature of load inertia. In this gain-adjusting algorithm, the pole locations are in proportion to the anti-resonance frequency of the 2-mass system. The simulation and experimental results show uniform properties in overshoot in spite of the variation of load.

  • PDF

An Improved Priority Application for Humanoid Robot in the Controller Area Network(CAN) (CAN내장 휴머노이드 로봇에 대한 진보된 우선순위 적용)

  • Ku Ja-bong;Huh Uk-youl;Kim Jin-geol;Kim Byung-yoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.714-719
    • /
    • 2004
  • The Controller Area Network (CAN) is being widely used in real-time control applications such as automobiles, aircraft, and automated factories. Unfortunately, CAN, in its current form, is not able to either share out the system bandwidth among the different devices fairly or to grant an upper bound on the transmission times experienced by the nodes connected to the communication medium as it happens, for instance, in the token-based networks. In this paper. we present the message scheduling for CAN, based on the distributed control scheme to integrate actuators and sensors in a humanoid robot. Besides introducing the new algorism, this paper also presents some performance figures obtained using a specially developed software simulator, while the behavior of the new algorism is compared with the traditional CAN systems, in order to see how effective they are.