Proceedings of the 13"
KACC, October 1998

Development of GUI for Industrial Robot Systems

Seong Ho Lee and Jae Wook Jeon
School of Electrical and Computer Engineering
SungKyunKwan University
Suwon 440-746, Korea
Tel: +82-331-290-7237
Fax: +82-331-290-7231
Email: Ish@ece.skku.ac.kr, jwjeon@yurim.skku.ac.kr

Abstract

This paper proposes a graphical user interface for
industrial robot systems. Previous user interfaces for
industrial robot systems were based on the text. In order to
enable operators to handle robots more efficiently, a set of
graphical tools is provided. The graphical tools contain a

control panel for operating robots and compiling robot -

programs, a graphical teaching panel for handling virtual
robots and a graphical monitoring panel for checking robot
status. Furthermore, the proposed GUI can be used to
operate remote robots because it has network utilities.

This system consists of the virtual mode and the real mode.
The user can handle a 3D virtual solid model of the robot in
the virtual mode and an actual robot in the real mode.

1. Introduction

Nowadays, as computers have been more widely used
from home to industry, wherever these have been used, a
user environment becomes one of the most important factors
for these. Despite that some systems have good
performances, operators have turned away their face due to
difficult user interfaces. In particular, a distributed
computing environment is on the rise so that each computer
in industry is allowed to share resources and is allocated
tasks through the network. Robot systems that execute a
variety of operations have to easy user interfaces so that they
are efficient to handle. Nevertheless, because previous user
interfaces of robots did not offer such environments, the
unexperienced operator had to spend a lot of time to deal
with robots. Graphical user environments or visual robot
program tools for robot systems have been developed and
these proposed a set of convenient graphical tools to the
operator [1-3]. However, industrial robot systems which use
teaching pendants have text-based user interfaces, and offer

105

little.extensibility for a distributed controlling environment
because of the exclusive cable between them. The primary
purpose of this paper is on the development of the easy and
reliable user environment for robot systems.

We have designed and implemented a virtual robot model
for :a simulation, device driver, application program
interfaces (API’s). Since hardware resources of robots are
complicated and dedicated, higher level needs a hardware
abstraction in order to access hardware resources easily.
Therefore, a layered and modular access to interface
hardware resources is used, Also it is working on event-
driven basis in order to fulfill real-time objectives. A client-
server approach provides a remote interface between the user
and robot’s resources and a connection to interplay between
lower level to handle its resources and higher level to write
application programs.

This paper is structured as follows. Section 2 describes the
system architecture of the robot, especially the software
framework. Section 3 introduces GUI environment for
controlling robots. In section 4, this is applied to operate an
actudl robot. Section 5 presents a conclusion and future work.

2. System Architecture

Overview

A_general robot system is implemented as illustrated in
Fig. 1. In this paper, GUI for robot systems is developed on
the X window and the network [4]. This enables the operator
to conveniently control though network. Essentially, GUI
must provide the user with an intuitive and easy environment
to deal with robots and monitor a response to hold a firm
belief for activity done by the user. Therefore, this GUI
offers a mechanism, a virtual technique to consider a
inevitable delay occurred through network when the operator
puts a command into robots.

A modular and layered software framework from

Servo Driver

)

Joint Position

Control ler
Robot 80196
Sytem
i)
I L . 1 -
- ————aTul] Device
= 4 Driver
—F L - -

HP Workstation

yx03S
Real Time System

Kouse

Fig. 1. A proposed robot system.

accepting user inputs to accessing robot’s resources, and
vice versa, is adapted to offer a successful paradigm in
modern software engineering; portability, reusability,
maintainability and so on [5].

Software framework

This modular and layered software framework consists of
four levels. Each level gives and takes regular data with one
another. User interface level is located in the highest level to
accept user information and output robot status. We will call
this UIL (user interface level). Data accepted from robot’s
resources to user inputs, vice versa, are transformed to a
regular type in the next position. We will name this DPL
(data processing level). Also, NML (network management
level) located in the third position transfers specific data
from/to the lowest level, VRCL (virtual and real control
level) have control modules - device drivers, API’s, real-time
control routines - in real environments. Its intention is to
raise a degree of efficiency as run parallel with one another.
For example, the operator can compile a robot program for
drawing up location data and simultaneously supervise robot
status with a set of graphical tools. However, since this robot
uses an encoder as a sensor for checking position, this need

106

user

graphioal user
interface

uIL
. user
R interface
levei
:" < ».
| & ."., wa
i ..
: B 1
i 'y
: p !
[P
: . i [
1 A compiler F data
: q_ ! processing
| — ; tevel
: i
cTient
! (203.252.51.68) i
. [yer 1
! 1] ;
H DLC
............. l | ML
% 4 5 T) network
% , nY
- . level
- DLL :
¥ N P i
TCP \
SETVer L SeTVer 1
{208.252.51.28) s (208.252.51.59)
A 1
4:: .\ |
. . controf
robot v nodule |
(en1p) ! H / \ 1
HP workstation | R VRCL
i ' ifo device jpo devioe Y ovirtual end
. driver driver j feal control
! level
1 Lynx03 i
i !
ereereeensreserssesssimes oot SO P J

virtual mode...
real mode —

Fig. 2. Details of Software Framework for General GUL

to return to zero. This means that the user not puts a
command into the robot until a servo is turned on and a robot
is returned to zero. GUI must consider the point; if the
sequence for the robot is not accomplished, GUI has to
generate suitable error messages for that situation. It is as
follows for details of software framework in Fig. 2.

User interface level: This provides the user with various
dialog boxes for input and a graphical monitor for output.
Because this part is shown to the user as begin this GUI, the
design of this lays emphasis on visual factors as well as
functional factors. That is, this part supplies the user with an
intuitive and easy environment.

UIL consists of seven windows as shown in Fig. 3, that is,
those are windows for setting system parameters, editing
location data, putting robot commands, robot programming,
a graphical teach, and a graphical monitor. Each window is
used for control robots in real and/or virtual environment
and has sub-windows to process various data from the user
and the robot.

astivate
stora { load -

even)

controt

Fig. 3. Interaction between UIL and DPL.

Data processing level: We can consider UIL HCI (human .

computer interaction), while regard DPL as a kind of data
processor. This level can be largely divided into two parts,
transcoder and compiler. First, the transcoder transforms raw
data from UIL into regular short messages, called packets,
appropriate to NML or vice versa. Second, the compiler
generates an intermediate code from a source code, and the
intermediate code is a kind of protocol used in NML.

One of the most prominent methods for handling robots is
to use a robot language. In practice, most robots in a
manufacturing plant execute tasks by robot programs.
Furthermore, the programming method for handling robots
makes up for the weak points in current a set of graphical
tools. That is, it supports more detailed instructions for
achievement of continuous and/or complex tasks. First of all,
development of a robot language translator must go ahead to
define the grammar of the robot language. Words that will be
used by the compiler have to be defined and grammatical
relationship of these established. The compiler consists of
two parts, the lexical analyzer and the parser. That looks at
the input stream as a collection of basic language elements
called tokens. Where, a token is an indivisible lexical unit.
This analyzes a sentence; to parse a sentence is to break it up
into its component parts in order to analyze it grammatically.
Therefore, the source code of a robot program is analyzed
and translated into an object code by the compiler, without

107

errors. The object code is the same the -output of the
transcoder and transferred robot servers through NML (Fig.
3.).

In Fig. 3, Interaction of between UIL and DPL is
illustrated. The main window consisted of seven sub-
windows forms general UIL. Each sub-window is executed
sequentially or concurrently and exchanges data with DPL.
Two types of data from the user and the robot are stored in
data structures or files and translated into a suitable type by
the transcoder and the compiler. The user activates this data
in sub-windows and this activated data will wait a sequence -
servo on, zero return - in the interactor.

Network management level: In this GUI, data from UIL
are arrived at NML via DPL. As pass through DPL, user ‘s

data are transformed into regular packets to transfer from
NML to VRCL. Thus, NML is a coupling device of clients
and servers. Where, UIL and DPL parts are clients and
VRCL part is servers. NML is based on the socket on
TCP/IP and connection-oriented service. Details of NML are
illustrated in Fig. 4.

In NML, the client AP1 will look at whether the type of
packets from a client is reasonable or not and if reasonable,
transfer packets into servers and start a timer for waiting a
reply. On the other side, the server API will look at the kind
of a packet received. If the kind of the packet is not the same
that of the packet had been received, the packet is
transmitted to VRCL. After that, other clients not send
another packets until an acknowledgment receive from a
server. That is, during this time, the client is blocked and
waits for a reply of the server. Events arriving at the
hardware interface and/or the virtual robot cause the
notification of the server API. The server API, notified about
events from servers, then replies to a waiting client. Because
it is send blocked, the client does not consume computation
time while waiting for a reply.

The server of the hardware interface has two socket ports.
One is used for controlling a robot, and the other for
checking the robot status. Thus, while the client transmits a
packet to the server, at the same time, the client will not miss
any sensor data, as long as its cycle time is smaller than the
sensor frequency.

Yirtual and real control level: This level implements the
logical link to the sensor or actuator. VRCL becomes a target
of a client and has mechanisms to access virtual and real
resources. It uses mechanisms provided by the real-time
operating systems [6]. Also, the level hides the sensor and

NML server

NML client

connect() tion establisheent

blocks .until connection
from client

ML server
protocol APy

API

is @ sending data

qual o
previous
data?

N

Fig. 4. Internal Structure of NML.

actuator access mechanisms, e.g., hardware ports address, by
using device drivers [7].

3. Graphical User Interface

Appearances and Functions

Fig. 5 shows whole GUI menus for a robot system
developed in this study. A pull-down menu is located in the
above part of the main window. Whole menus consist of six
sub-windows; for setting parameters, editing location data,
putting commands, programming, graphical teaching, and
graphical monitoring. Each sub-window has one function or
another sub-window, which essentially, processes data from
the operator. Also, sub-windows except the window for
setting parameters and graphical monitoring can interconnect
the virtual and/or the real robot through network. Fig. 6
illustrates the beginning picture and some windows.
Considering the function of each window is as follows.

Parameter setting window: The operator will be able to set
parameter values in this. That is, speed, initialization, limit
value, offset value, acceleration, deceleration, gain value,

108

{ T I T
[owremetor | [tosation | [commens] [_E"] [reen

graphtaa)
zonifor 1ng

SPERD FIR ZRERR | | CORPILE] LINE
L) v Hew] Hew
) =] Wee Lo
Hee] O]

Fig. 5. Menus of GUIL

Fig. 6. The beginning picture and some windows.

and arm type.

Location data editing window: The operator will be able to

create and edit location data with world coordinate or joint
coordinate values. Location data created are conveniently
managed by using some keys, FIND, SET, COPY, REN,
DEL, HERE, and JOG. Where, HERE and JOG keys are able
to read the current position of a robot and this location data
are stored in a file.

Command window: This window reads a file created in the
window for editing location data and displays data in this.
The user will manipulate robots by using MOVE key for
PTP (point to point) motion or CMOVE key for CP
(continuous point) motion with this data and LOOP key will
be used for repeated motion.

Program window: In this window, the user will edit robot

programs with the grammar defined by the compiler. The
robot program is compiled and transmitted to robot servers
through network. Where, the user can utilize Table. 1.

Table 1. A robot language

zr Zero return

Command | move PTP (point to point) motion

words cmove | CP (continuous point) motion

delay Delay time
if else | Decisions
for Loops

Statements
stop Stop executing
by Speed
jloc Joint coordinate
cloc Cartesian coordinate

Data type
int Integer
float Real

Operators + -) -

Graphical teaching window: The user will click the mouse

to move 2D robots drawn on the x-y plane with first axis and
second axis and on the z plane with third axis. If so, the user
can move virtual and/or real robots to a desired position by
only drifting the mouse. At the same time, the 2D robot is
moved as its inverse kinematics. Fig. 7 shows the graphical
teaching window.

This enables the user to
supervise a robot status because it illustrates the velocity
profile of each axis graphically.

rin indow:

Virtual Robot

It is difficult that the user operate a remote robot through
network with his eyes close. Thus, to control the remote
robot, virtual robot environment is necessary. In the virtual
mode, the user can simulate the 3D robot and manipulate
more accurately the real robot. Also, as choose both the
virtual mode and the real mode, the user can operate the
remote robot as reality seeing the virtual robot.

4. Application

109

IS

J

T

Fig. 7. Graphical teaching window.

In order to test the developed GUI, communication and
-control architecture the SCARA robot has been used in this
-paper. Applied systems consist of SCARA Robot (Samsung
.FARA SM2), servo driver (Samsung SSD) and two joint
- position controllers. We used PC (Pentium 166Mhz) as the
~client computer and the server computer for the real robot,
LynxOS, UNIX compatible real-time system, as operating
systems for these and IGRIP on HP 715/33 as the virtual
.robot.

Fig. 8 shows the velocity profile of each axis as a robot is
' being executed by program method.

BRSNS 3 A

i

1.\‘

IR
J
1
{

=

39 10117131615 15 17 18 49

Fig. 8. Graphical monitoring.

5. Conclusions

We have operated and monitored robots on this GUI. It is
based on a client-server communication. The introduction of
this GUI provides the user with convenient method for

controlling robots through network. Thus, in industry, users
can reduce much time to be educated so that they can
operate robots. :

This GUI system has been implemented successfully for
our test robot. It is very flexible and will be adapted to a
broad variety of networks. Furthermore, the presented GUI
system will support adaptability to new hardware and
portability to other related systems, e.g., mobile robots.

6. References

[1]. Detlef Zuhlke, Frank Mobius and Christoph Schroder,
“Symbols facilitate programming of industrial robots”,
Proceedings of the IEEE International Conference on
Robotics and Automation, vol. 4, pp. 3037-3042, April 1997.
[2]. Matthew W. Gertz, David B. Steward, and Pradeep K.
Khosla, “A Software architecture human-machine interface
for reconfigurable sensor-based control systems”,
Proceedings of 8" IEEE International Symposium on
Intelligent Control, Chicago, Aug. 25-26, 1993.

{3]. Miguel Rodriguez, Alain Codourey, “Graphical User
Interface to manipulate objects in the micro world with a
high precision robot”, Proceedings of the IEEE International
Conference on Robotics and Automation, vol. 4, pp. 3031-
3036, April 1997.

[4]. Douglas A. Young, The X Window System Programming
and Application With Xt, Prentice-Hall, Inc, 1994,

[5]. Ian Sommerville, Software Engineering, Addison-
Wesley, 1996.

[6). LynxOS Application Writer’s Guide, Lynx Real-Time
Systems Inc., Los Gatos, California, 1995.

[7]. Device Driver Development Guide, Lynx Real-Time
Systems Inc., Los Gatos, California, 1995.

110

