• Title/Summary/Keyword: Controlled precipitation

Search Result 185, Processing Time 0.029 seconds

Controlled Deformation of Microalloyed Steel by Precipitation and Recrystallization (미량원소첨가강의 석출 및 재결정에 의한 제어변형)

  • 조상현;김성일;유연철
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.102-109
    • /
    • 1997
  • The multistage deformation and stress relaxation were carried out to investigate the strain induced precipitation by torsion tests in the range of 1000~80$0^{\circ}C$, 0.05~5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests. The distribution of precipitates increased, as the strain rate increased and the mean size of precipitates was found to be about 10~30nm. The precipitation starting time$(P_s)$ decreased with increasing strain rate and the amount of pre-strain. The effect of deformation conditions on the no-recrystallization temperature$(T_nr)$ was also determined in the multistage deformation. $T_nr$ Tnr decreased with increasing the strain and strain rate. In the controlled rolling simulation, grain refinement and precipitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

Study on the Self-Aligned HgTe Nanocrystallites Induced by Controlled Precipitation Technique in HgTe-PbTe Quasi-Binary Semiconductor System: Part I. TEM Study

  • Lee, Man-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.226-231
    • /
    • 2002
  • The present study discusses the results of the controlled precipitation of HgTe nanocrystals in a PbTe semiconductor matrix and demonstrates its effectiveness in producing well-organized and crystallographically aligned semiconductor nanocrystals. Following the similar procedure used in metallic alloys, the semiconductor alloys are treated at 600$^{\circ}C$ for 48 hours, quenched and aged up to 500 hours at 300$^{\circ}C$ and 450$^{\circ}C$ to induce homogeneous nucleation and growth of HgTe nanocrystalline precipitates. Examination of the resulting precipitates using transmission electron microscopy (TEM) and high resolution TEM (HRTEM) reveals that the coherent HgTe precipitates form as thin discs along the {100} habit planes making a crystallographic relation of {100}$\sub$HgTe///{100}$\sub$PbTe/ and [100]$\sub$HgTe///[100]$\sub$PbTe/. It is also found that the nato-disc undergoes a gradual thickening and a faceting under isothermal aging up to 500 hours without any noticeable coarsening. These results, combined with the extreme dimension of the precipitates (4 nm in length and sub-nanometer in thickness) and the simplicity of the formation process, leads to the conclusion that controlled precipitation is an effective method for the preparation of the desirable quantum-dot nanostructures.

  • PDF

Electron Microscope Analyses of Self-aligned HgTe Nanocrystallites Induced by Controlled Precipitation Technique

  • Lee, Man-Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.8-13
    • /
    • 2002
  • Controlled precipitation of quasi-binary semiconductor system is newly proposed as an effective and reliable technique for the formation of well-defined and crystallographically aligned semiconductor nanostructures. Using HgTe-PbTe quasi-binary semiconductor system, self-aligned HgTe nanocrystallites distributed three dimensionally within PbTe matrix were successfully formed by the simple three step heat treatment process routinely found in age hardening process of metallic alloys. Examination of the resulting nano precipitates using conventional transmission electron microscopy (CTEM) and high resolution TEM (HRTEM) reveals that the coherent HgTe precipitates form as thin discs along the (100) habit planes making a crystallographic relation of {100}$\_$HgTe///{100}$\_$PbTe/ and [100]$\_$HgTe///[100]$\_$PbTe/. It is also found that the precipitate undergoes a gradual thickening and a faceting under isothermal aging up to 500 hours without any noticeable coarsening. These results, combined with the extreme dimension of the precipitates (4-5 nm in length and sub-nanometer in thickness) and the simplicity of the formation process, leads to the conclusion that controlled precipitation is an effective method for preparing desirable quantum-dot nanostructures.

Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation

  • Kwak, Jun-Young;Lee, Choong-Sub;Kim, Don;Kim, Yeong-Il
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.609-616
    • /
    • 2012
  • Ba-ferrite ($BaFe_{12}O_{19}$) nanoparticles were synthesized by chemical coprecipitation method in an aqueous solution. The particle size and the crystallization temperature of the Ba-ferrite nanoparticles were controlled varying the precipitation temperature. The precipitate that was prepared at $0^{\circ}C$ showed the crystal structure of Ba-ferrite in X-ray diffraction when it was calcined at the temperature above $580^{\circ}C$, whereas what was prepared at $50^{\circ}C$ showed the crystallinity when it was calcined at the temperature higher than about $700^{\circ}C$. The particle sizes of the synthesized Ba-ferrite were in a range of about 20-30 nm when it was prepared by being precipitated at $0^{\circ}C$ and calcined at $650^{\circ}C$. When the precipitation temperature increased, the particle size also increased even at the same calcination temperature. The magnetic properties of the Ba-ferrite nanoparticles were also controlled by the synthetic condition of precipitation and calcination temperature. The coercive force could be appreciably lowered without a loss of saturation magnetization when the Ba-ferrite nanoparticles were prepared by precipitation and calcination both at low temperatures.

Synthesis of Sinter-active $Y_2O_3$ Powders Using Urea (요소를 이용한 활성 이트리아 분말의 합성)

  • 한주환
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1247-1253
    • /
    • 1997
  • Sinter-active yttria powders were prepared by a solution precipitation with using a self-decomposing precipitation agent NH2CONH2(urea). The cold-pressed powders can be sintered to full density and the microstructure of grains less than 200 nm at a temperature as low as 120$0^{\circ}C$. The activity of the yttria powder has been controlled by varying nucleation conditions during precipitation and by minimizing formation of aggregates. The type of precursor is decisive in preparation of a sinter-active oxide powder, and urea is desirable as a precipitation agent for an active yttrium oxide powder.

  • PDF

Observed Characteristics of Precipitation Timing during the Severe Hazes: Implication to Aerosol-Precipitation Interactions (연무 종류별 강수 발생시간 관측 특성 및 에어로졸-강수 연관성 분석)

  • Eun, Seung-Hee;Zhang, Wenting;Park, Sung-Min;Kim, Byung-Gon;Park, Jin-Soo;Kim, Jeong-Soo;Park, Il-Soo
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.175-185
    • /
    • 2018
  • Characteristics of precipitation response to enhanced aerosols have been investigated during the severe haze events observed in Korea for 2011 to 2016. All 6-years haze events are classified into long-range transported haze (LH: 31%), urban haze (UH: 28%), and yellow sand (YS: 18%) in order. Long-range transported one is mainly discussed in this study. Interestingly, both LH (68%) and YS (87%) appear to be more frequently accompanied with precipitation than UH (48%). We also found out the different timing of precipitation for LH and YS, respectively. The variations of precipitation frequency for the LH event tend to coincide with aerosol variations specifically in terms of temporal covariation, which is in contrast with YS. Increased aerosol loadings following precipitation for the YS event seems to be primarily controlled by large scale synoptic forcing. Meanwhile, aerosols for the LH event may be closely associated with precipitation longevity through changes in cloud microphysics such that enhanced aerosols can increase smaller cloud droplets and further extend light precipitation at weaker rate. Notably, precipitation persisted longer than operational weather forecast not considering detailed aerosol-cloud interactions, but the timescale was limited within a day. This result demonstrates active interactions between aerosols and meteorology such as probable modifications of cloud microphysics and precipitation, synoptic-induced dust transport, and precipitation-scavenging in Korea. Understanding of aerosol potential effect on precipitation will contribute to improving the performance of numerical weather model especially in terms of precipitation timing and location.

Synthesis of Manganese Hydrogen Phosphate Hydrate by Controlled Double-jet Precipitation (더블제트 침전법에 의한 제이인산망간염 수화물의 새로운 합성 방법)

  • Kim, Won-Seok;Kang, Yong;Kim, Yeong-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • Manganese hydrogen phosphate hydrate, $MnHPO_4{\cdot}2.25H_2O$, is a major constituent of the pre-conditioning compositions for the manganese phosphate coating treatment over carbon steel substrate. This compound is conventionally produced by the synthesis in the aqueous solution process followed by the filtration and drying processes and a series of size reduction and classification processes in dry state. However, it is evident that the conventional process is neither environment-friendly nor cost-effective. In this work, a new process principle was examined based on the controlled double-jet precipitation technology to produce the manganese chemical product of fairly uniform particle size distribution in an aqueous solution media. The effects of stabilizing agents were comparatively studied by the scanning electron microscope analysis in a uniformity point of view of the resulting particle size. Polyvinylpyrrolidone and Gum Arabic were excellent in controlling the crystal growth step, resulting in fairly uniform size distributions of the particles from the controlled double-jet process.

Preparation and Properties of Spherical BaMgAl10O17:Eu Phosphor by Multi-step Precipitation Method (다단 침전법에 의한 구형 BaMgAl10O17:Eu 형광체의 제조 및 특성)

  • Park, Jumg-Min;Jung, Ha-Kyun;Park, Hee-Dong;Park, Yoon-Chang
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.840-844
    • /
    • 2002
  • A spherical $BaMgAl_{10}$ $O_{17}$ :Eu phosphor has been synthesized by a multi-step precipitation route. In order to successfully synthesize the phosphor with spherical shape, the hydrated-alumina particles should be controlled for spherical shape. In this process, the hydroxypropyl cellulose (HPC) was used as a dispersing reagent. This reagent plays an important role in that the particles were controlled to have the uniform size of sub-micron. The final product prepared by the multi-step precipitation method maintained spherical shape with uniform size of 0.4$\mu\textrm{m}$. It can be seen in X-ray diffraction patterns, formation of the single phase of $BaMgAl_{10}$ $O_{17}$ :Eu phosphor prepared by the multi-step precipitation method at $1350^{\circ}C$. Also, the emission spectra of spherical $BaMgAl_{O}$ $10_{17}$ :Eu phosphor in the present case was compared with those of commercially-available blue phosphor under VUV (Vacuum Ultra Violet) excitation. The luminescence process of the $BaMgAl_{10}$ $O_{17}$ :Eu phosphor is characterized by the $4f^{6}$$5d^1$longrightarrow4f$^{7}$ transition (blue) of the $Eu^{2+}$ ion acting as an activating center and the maximum luminescence intensity was obtained by reduction treatment at 145$0^{\circ}C$.

Synthesis, Characterization and Functionalization of the Coated Iron Oxide Nanostructures

  • Tursunkulov, Oybek;Allabergenov, Bunyod;Abidov, Amir;Jeong, Soon-Wook;Kim, Sungjin
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • The iron oxides nanoparticles and iron oxide with other compounds are of importance in fields including biomedicine, clinical and bio-sensing applications, corrosion resistance, and magnetic properties of materials, catalyst, and geochemical processes etc. In this work we describe the preparation and investigation of the properties of coated magnetic nanoparticles consisting of the iron oxide core and organic modification of the residue. These fine iron oxide nanoparticles were prepared in air environment by the co-precipitation method using of $Fe^{2+}$: $Fe^{3+}$ where chemical precipitation was achieved by adding ammonia aqueous solution with vigorous stirring. During the synthesis of nanoparticles with a narrow size distribution, the techniques of separation and powdering of nanoparticles into rather monodisperse fractions are observed. This is done using controlled precipitation of particles from surfactant stabilized solutions in the form organic components. It is desirable to maintain the particle size within pH range, temperature, solution ratio wherein the particle growth is held at a minimum. The iron oxide nanoparticles can be well dispersed in an aqueous solution were prepared by the mentioned co-precipitation method. Besides the iron oxide nanowires were prepared by using similar method. These iron oxide nanoparticles and nanowires have controlled average size and the obtained products were investigated by X-ray diffraction, FESEM and other methods.

A Study on Electroless Ni-B Plating with DMAB as Reducing Agent. I. The Electrochemical Behavior of Precipitation Reaction on Austenite Stainless Steel Substrates (DMAB를 사용한 무전해 Ni-B 합금 도금 I. 오스테나이트 스텐레스강 상의 석출반응에 대한 전기화학적 거동)

  • 이창래;박해덕;강성군
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.172-181
    • /
    • 1999
  • The effect of the DMAB concentration, temperature, deposition time, and stabilizer concentration on the precipitation reaction of the electroless nickel plating using dimethylamine borane (DMAB) as reducing agent was investigated to by the weight gain and electrochemical method. The deposition rate was dependent with DMAB concentration. The polarization resistance of the precipitation reaction was reduced with DMAB concentration. The precipitation reaction rate of Ni-B deposits was controlled by the oxidation rate of DMAB as the source of electron. The boron content of the deposit was constant at about 5.5wt%, even when DMAB concentration in the solution was increased. The effect of temperature and stabilizer ($Pb(NO_3)_2$) concentration on deposition rate was shown to have co-dependent behaviors.

  • PDF