• Title/Summary/Keyword: Controlled crystallization

Search Result 102, Processing Time 0.025 seconds

Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films with Various Drying Temperature for FRAM Applications (FRAM 응용을 위한 건조온도에 따른 BLT 박막의 강유전 특성)

  • 김경태;김동표;김창일;김태형;강동희;심일운
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.265-271
    • /
    • 2003
  • Ferroelectric lanthanum-substituted Bi$_4$Ti$_3$O$_{12}$(BLT) thin films were fabricated by spin-coating onto a Pt/Ti/SiO$_2$/Si substrate by metalorganic decomposition technique. The grain size in BLT thin films were prepared with controlled by various drying process. The effect of grain size on the crystallization and ferroelectric properties were investigated by x-ray diffraction and field emission scanning electron microscope. The dependence of crystallization and electrical properties are related to the grain size in BLT thin films with different drying temperature. The remanent polarization of BLT thin film increases with the increasing grain size. The value of 2P$_{r}$ and E$_{c}$ of BLT thin film dried at 45$0^{\circ}C$ were 25.9 $\mu$C/$\textrm{cm}^2$ and 85 kV/cm, respectively. The BLT thin film with larger grain size has better fatigue properties. The fatigue properties revealed that small grained film showed more degradation of switching charge than large grained films.lms.s.

A Study on Crystallization of Linear Low Density Polyethylene Particles from Decalin Solution (Decalin 용액에서 선형 저밀도 폴리에틸렌 입자의 결정화에 관한 연구)

  • Park, Keun-Ho;Jang, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.370-376
    • /
    • 2012
  • We fabricated linear low density polyethylene (LLDPE) particles via crystallization from decalin solution. In the thermally induced phase separation (TIPS) process, formation of particles occurred during controlled cooling of LLDPE/decalin solution. Despite an increase of nucleation and growth rate for crystals at higher polymer concentrations, which generally results in larger particles than at lower concentration, the average diameter of LLDPE particles increased as LLDPE was more concentrated in decalin solution. In the FE-SEM micrographs, the observed particles from various concentrations were smaller than 10 ${\mu}m$, showing spherical morphologies. In addition to its effect on size, concentration of LLDPE had an broadening effect on the particle size distribution.

Process variables of gamma-type aluminum trihydride in wet chemical synthesis (감마형 삼수소 알루미늄 습식합성반응의 공정변수 연구)

  • Yang, Yo-Han;Kim, Woo-Ram;Gwon, Yoon-Ja;Park, Mi-Jeong;Kim, Jun-Hyung;Cho, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.214-222
    • /
    • 2018
  • Alane(aluminum trihydride, $AlH_3$) is a candidate material involving high energetic capacity for solid propellant or explosives. In this study aluminum trihydride-etherate ($AlH_3{\cdot}(C_2H_5)_2O$) was synthesized through a wet process, and solid alane was extracted by controlled crystallization. Alane crystals were grown during the crystallization step with phase conversion of aluminum trihydride-etherate to alane using an anti-solvent. Stable crystal forms were found by a 2 hour crystallization process at $85^{\circ}C$. Finally the extracted solid aluminium trihydride consisted mainly of ${\gamma}-type$ with $50-100{\mu}m$ in size.

Change of Calcium Carbonate Crystal Size at steady state in CMSMPR(Continuous Mixed Suspension Mixed Produce Removal) Crystallizer (연속식결정화기 정상상태에서 탄산칼슘 결정크기 변화)

  • Han, Hyun Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.714-719
    • /
    • 2017
  • The controlled synthesis of inorganic materials with a specific size and morphology is an important factor in the development of new materials in many fields, such as nanoparticles, medicine, electronics, semiconductors, pharmaceutical sand cosmetics. Solution crystallization is one of the most widely used separation processes in the chemical and pharmaceutical industries. Calcium carbonate has attracted a great deal of attention in industry because of its numerous applications. The mean crystal size, crystal size distribution and morphology are important factors in the continuous crystallization process. In this study, the continuous crystallization of calcium carbonate by the calcium chloride process was investigated. The mean crystal size and crystal size distribution data were obtained by a particle size analyzer. The morphological imaging of the crystalswasper formed by SEM. Under steady state operation, the mean crystal size change was small, but increasing the input concentration and mixing rate increased the crystal size. In this operation, some aragonite was found, but the main crystal phase was calcite.

Chemoenzymatic Synthesis of H-shaped Amphiphilic Pentablock Copolymer and Its Self-assembly Behavior (H-형태 양친매성 펜타블록 공중합체의 화학효소적 합성과 자기회합거동 평가)

  • Chen, Peng;Li, Ya-Peng;Li, Cai-Jin;Meng, Xin-Lei;Zhang, Bao;Zhu, Ming;Liu, Yan-Jing;Wang, Jing-Yuan
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.332-341
    • /
    • 2013
  • H-shaped amphiphilic pentablock copolymers $(PSt)_2-b-PCL-b-PEO-b-PCL-b-(PSt)_2$ was synthesized via chemoenzymatic method by combining enzyme-catalyzed ring-opening polymerization (eROP) of ${\varepsilon}$-caprolactone (${\varepsilon}$-CL) and atom transfer radical polymerization (ATRP) of styrene. By this process, we obtained copolymers with controlled molecular weight and low polydispersity. The structure and composition of the obtained copolymers were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and infrared spectroscopy analysis (IR). The crystallization behavior of the copolymers was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The crystallization behavior of the H-shaped block copolymers demonstrated a PCL dominate crystallization. The self-assembly behavior of the copolymers was investigated in aqueous media. The hydrodynamic diameters of the copolymer micelles in aqueous solution were measured by dynamic light scattering (DLS). The morphology of the copolymer micelles was observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The hydrodynamic diameters of spherical micelles declined gradually with the increase of the hydrophobic chain lengths of the copolymers. The critical micelle concentration (CMC) values were determined from fluorescence emission, and it was found that the CMCs decreased with an increase of PSt hydrophobic block lengths.

Synthesis of Metallic Gold Colored α-Al2O3 Nanoplate-TiO2 Core-Shell Pigments with Robust and Photo-Stable Smooth TiO2 Shell

  • Lee, Su Jin;You, Myoung Sang;Park, Jin Kyoung;Park, Bum Jun;Im, Sang Hyuk
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.390-397
    • /
    • 2020
  • To synthesize non-corrosive metallic gold colored α-Al2O3 nanoplate-TiO2 core-shell pigments with controlled roughness, we systematically checked the morphological variation of the TiO2 shell with the mole ratio of TiCl4 and NaOH from 1 : 1 to 1 : 1.5, 1 : 2, 1 : 2.5, 1 : 3, 1 : 3.5, and 1 : 4. The more increased mole ratio of TiCl4 and NaOH resulted in the smoother TiO2 shell due to the promoted formation of anatase TiO2 than that of the rutile one. By the heat-treatment of pigments at 500 ℃, we could improve the adhesiveness between TiO2 shell and α-Al2O3 nanoplates without changing their topology and roughness. In addition, the α-Al2O3 nanoplate with the robust TiO2 by heat-treatment exhibited comparable photo-stability against photo-catalytic degradation by UV exposure compared with the commercially available α-Al2O3/TiO2 lustering pigment.

Thermal Stability and Behavior of Isothermal Crystallization in Fe-P-C-B-(AI-Ge) Amorphous Alloys (Fe-P-C-B-(AI-Ge)계 비정질합금의 열적 안정성과 등온결정화 거동)

  • Jeon, U-Yong;Guk, Jin-Seon;Bae, In-Seong;Seol, Gyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1026-1030
    • /
    • 1998
  • Thermal properties of Fe- base amorpous alloys were investigated. $Fe_{80}P_6C_{12}B_{12}$ and $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloys were fabricated by melt spinning method and thermal analysis was done by differential scanning calorimeter. After isothermal crystallization. the Avrami exponents of $Fe_{80}P_6C_{12}B_{12}$ and $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloys were 1.8-2.2 and 2.5-4.0, respectively. It means the former alloy shows diffusion controlled growth and the latter one shows interface controlled growth. For $Fe_{80}P_6C_{12}B_{12}$ and $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloys. the activation energies of isothermal crystallization was 353 and 371kJlmol. Also the activation energies of nucleation and growth were 301, 324kJlmol and 273. 30lkJ/mol, respectively. Thus $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloy is considered to be more stable than $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloy.

  • PDF

In vitro CaCO3 Crystallization at Room Temperature and Atmospheric Pressure Using Recombinant Proteins GRP_BA and GG1234 (재조합단백질 GRP_BA 및 GG1234를 이용한, 상온상압조건에서의 In vitro 탄산칼슘 결정화)

  • Son, Chaeyeon;Song, Wooho;Choi, Hyunsuk;Choi, Yoo Seong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.205-209
    • /
    • 2019
  • The exquisite structure and attractive biological properties of biominerals have great potential and increased interest for use in a wide range of medical and industrial applications. Calcium carbonate biomineralization, mainly controlled by shell matrix proteins, has been used as a representative model to understand the biomineralization mechanism. In this study, in vitro calcium carbonate crystallization was carried out under room temperature and atmospheric pressure using recombinant shell matrix protein GRP_BA and artificial shell matrix protein GG1234. Both proteins inhibited the growth of typical rhombohedral calcite crystals in the calcium carbonate crystallization using $CaCl_2$ solution and $(NH_4)_2CO_3$ vapor, and spherulitic calcite crystals with rosette-like structures were synthesized in both the presence of GRP_BA and GG1234. These results might be caused by the properties of block-like domain structure and intrinsically disordered proteins. We expect that this study can contribute to enhance understanding of the calcium carbonate biomineralization controlled by shell matrix proteins.

Tailoring Porosity of Colloidal Boehmite Sol by Controlling Crystallite Size

  • Park, Myung-Chul;Lee, Sung-Reol;Kim, Hark;Park, In;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1962-1966
    • /
    • 2012
  • Boehmite sols have been prepared by crystallization of amorphous aluminum hydroxide gel obtained by hydrolysis and peptization of aluminum using acetic acid. The size of the boehmite crystallites could be controlled by Al molar concentration in amorphous gel by means of controlling grain growth at nucleation stage. The size of boehmite increases as a function of Al molar concentration. With increasing boehmite crystallite size, the $d_{(020)}$ spacing and the specific surface area decreases, whereas the pore volume increases along with pore size. Especially, the pore size of the boehmite sol particles is comparable to the crystallite size along the b axis, suggesting that the fibril thickness along the b axis among the crystallite dimensions of the boehmite contributes to the pore size. Therefore, the physical properties of boehmite sols can be determined by the crystallite size controlled as a function of initial Al concentration.

Preparation of Nano-sized Zirconia Powders by the Impregnation Method (함침법에 의한 지르코니아 나노 분말의 합성)

  • Han, Cheong-Hwa;Kim, Soo-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.454-460
    • /
    • 2012
  • The nano-sized zirconia powders were synthesized in an impregnation method using pulp and $ZrOCl_2{\cdot}8H_2O$ as an initial material. The synthesized powders were characterized by XRD and FE-SEM. The particle size of the powder was controlled by preparation conditions, such as drying temperature and time. As a result of the various drying and calcination conditions, 30~50 nm sized homogeneous zirconia particles were obtained at $800^{\circ}C$ for 1 h. Crystallization and the rapid growth of particles were accelerated with increasing calcination temperature and time. Tetragonal phase generated below $800^{\circ}C$ were transferred to monoclinic phase with increasing calcination temperature and time. Moreover, above $800^{\circ}C$, heat treatment time had very large influence on the particle growth, and the change of drying condition also had large influence on the growth of a crystal.