DOI QR코드

DOI QR Code

A Study on Crystallization of Linear Low Density Polyethylene Particles from Decalin Solution

Decalin 용액에서 선형 저밀도 폴리에틸렌 입자의 결정화에 관한 연구

  • Received : 2012.06.06
  • Accepted : 2012.09.21
  • Published : 2012.09.30

Abstract

We fabricated linear low density polyethylene (LLDPE) particles via crystallization from decalin solution. In the thermally induced phase separation (TIPS) process, formation of particles occurred during controlled cooling of LLDPE/decalin solution. Despite an increase of nucleation and growth rate for crystals at higher polymer concentrations, which generally results in larger particles than at lower concentration, the average diameter of LLDPE particles increased as LLDPE was more concentrated in decalin solution. In the FE-SEM micrographs, the observed particles from various concentrations were smaller than 10 ${\mu}m$, showing spherical morphologies. In addition to its effect on size, concentration of LLDPE had an broadening effect on the particle size distribution.

우리는 decalin 용액으로부터 결정화 통해 선형 저밀도 폴리에틸렌 (LLDPE) 입자를 제조하였다. 열 유도 상 분리 (TIPS) 공정에서 입자의 형성은 LLDPE/decalin 용액을 제어하여 냉각하는 동안에 형성되었다. 높은 폴리머 농도에서 결정화를 위한 핵 생성과 성장속도의 증가에도 불구하고, 일반적으로 저 농도에서 보다 큰 입자를 초래하였으며, 결과적으로 LLDPE는 decalin 용액에서 농도가 증가할수록 LLDPE 입자의 평균 직경이 증가했습니다. FE-SEM 의 현미경사진에서, 다양한 농도로부터 관찰된 입자는 10 ${\mu}m$ 보다 작았으며, 구형 형태를 나타내었다. 부가적으로 그 크기에 대한 효과를 보면, LLDPE 입자 크기 분포는 폴리머 농도가 높을 때가 폭이 컸다.

Keywords

References

  1. D. E. James "Encyclopedia of Polymer Science and Engineering", ed by H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Krcschwitz, John Wiley& sons Inc., New York, 6(2), 385 (1985).
  2. Y. P. Huang, J. W. Tang, F. M. Chang, and C. H. Tien, Effect of Surface Treatment on Titania- Modified PET Fiber Using Polyethylene Nanoparticles, Ind. Eng. Chem. Res. 48, 8487 (2009).
  3. S. M. Yu and S. Mecking, Variable Crystallinity Polyethylene Nano- particles, Macromolecules, 42, 3669 (2009).
  4. A. Amgoune, M. Krumova, and S. Mecking, Nanoparticle-Supported Molecular Polymerization Catalysts. Macromolecules, 41, 8388 (2008).
  5. V. Monteil, J. Stumbaum, R. Thomann, and S. Mecking, Silica/polyethylene Nanocomposite Particles from Catalytic Emulsion Polymerization, Macromolecules, 39, 2056 (2006).
  6. K. H. Park and Y. M. Jang, A Study on the Crystallization of Low Density Polyethylene Microparticles in n-Dodecanol Solution, J. Kor. Oil Chem. Soc., 28(3), 306 (2011).
  7. V. La Carrubba, F. Carfì Pavia, V. Brucato, S. Piccarolo, and G. Ghersi, PLLA Biodegradable Scaffolds for Angiogenesis via Diffusion Induced Phase Separation (DIPS), Int. J. Ma.t. Form., 1(1), 623, 1960 (2008).
  8. W. H. Hou and T. B. Lloyd, A New Technique for Preparing Mono Disperse Polymer Particles, J. App. Poly. Sci., 45, 1783 (1992).
  9. P. Schaaf, B. Lotz, and J. C. Wittmann, Liquid-liquid Phase Separation and Crystallization in Binary Polymer Systems, Polymer, 28, 193 (1987).
  10. J. K. Kim and K. J. Kim, Phase Equilibrium of Polyethylene- dodecanol System, Theo. App. Chem. Eng., 8(2), 3481 (2002).
  11. K. H. Park, Electrochemistry Characterization of Metal Using Corrosion Inhibitors Containing Amide Functional Group, J. Kor. Oil Chem. Soc., 28(1), 48 (2011).
  12. K. H. Park and Y. M. Jang, A Study on the Preparation of a Linear Low Density Polyethylene Particles by Thermally Induced Phase Separation, J. Kor. Oil Chem. Soc., 28(4), 386 (2011).
  13. J. Brandrup, E. H .Immergut, E. A. Grulke, "Polymer Handbook" 4th. ed., John Wiley & Sons, (1999).
  14. K. H. Park, J. W. Seo, and Y. M. Jang, Preparation of Micro-Particles Polymer by Thermally Induced Phase Separation (TIPS) Method, KOCS International Symposium- 2011, Kor. Oil Chem. Soc., P. 161 (2011).
  15. K. H. Park, J. W. Seo, and Y. M. Jang, A Study on the Crystallization of The Linear Low Density Polyethylene, Theories and Applications of Chemical Engineering, 359 (2012).