• Title/Summary/Keyword: Control gain

Search Result 4,546, Processing Time 0.038 seconds

A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach (로프 길이변화를 고려한 크레인의 흔들림 제어에 관한 연구: Gain-Scheduling 기법에 의한 제어기 설계)

  • Kim, Y.W.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.58-66
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach (로프 길이 변화를 고려한 크레인의 흔들림 제어에 관한 연구;Gain-Scheduling 기법에 의한 제어기 설계)

  • Kim, Y.W.;Kim, Y.B.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.631-636
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the experiment result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

D.C. Motor Speed Control by Learning Gain Regulator (학습이득 조절기에 의한 직류 모터 속도제어)

  • Park, Wal-Seo;Lee, Sung-Su;Kim, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.82-86
    • /
    • 2005
  • PID controller is widely used as automatic equipment for industry. However when a system has various characters of intermittence or continuance, a new parameter decision for accurate control is a bud task. As a method of solving this problem, in this paper, a teaming gain regulator as PID controller functions is presented. A propriety teaming gain of system is decided by a rule of Delta learning. The function of proposed loaming gain regulator is verified by simulation results of DC motor.

Gain-scheduling of Acceleration Estimator for Low-velocity Measurement with Encoders

  • Son, Seung-Woo;Lee, Sang-Hun;Hur, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1853-1857
    • /
    • 2005
  • In most of motor-driven motion control systems, an encoder is used to measure a position of the motor and the velocity information is obtained by measuring the position increment over a sampling period. The quantization effect due to limited resolution of the encoder induces some measurement errors, and consequently causes deterioration of the motion performance especially in low velocity. In this paper, we propose a gain-scheduled acceleration estimator which works in wider velocity range than the original acceleration estimator. We investigate and analyze characteristics of the velocity measurement mechanism which takes into account the quantization effect of the encoder. Next, we introduce the acceleration estimator and propose a gain-scheduled acceleration estimator. The bandwidth of the gain-scheduled acceleration estimator is automatically adjusted by the velocity command. Finally, its performance is evaluated by simulation and experiment, and the results are compared with those of a conventional method and the original acceleration estimator.

  • PDF

Monolithic SiGe HBT Feedforward Variable Gain Amplifiers for 5 GHz Applications

  • Kim, Chang-Woo
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.386-388
    • /
    • 2006
  • Monolithic SiGe heterojunction bipolar transistor (HBT) variable gain amplifiers (VGAs) with a feedforward configuration have been newly developed for 5 GHz applications. Two types of the feedforward VGAs have been made: one using a coupled-emitter resistor and the other using an HBT-based current source. At 5.2 GHz, both of the VGAs achieve a dynamic gain-control range of 23 dB with a control-voltage range from 0.4 to 2.6 V. The gain-tuning sensitivity is 90 mV/dB. At $V_{CTRL}$= 2.4 V, the 1 dB compression output power, $P_{1-dB}$, and dc bias current are 0 dBm and 59 mA in a VGA with an emitter resistor and -1.8 dBm and 71mA in a VGA with a constant current source, respectively.

  • PDF

A CMOS RF Power Detector Using an AGC Loop (자동 이득제어 루프를 이용한 CMOS RF 전력 검출기)

  • Lee, Dongyeol;Kim, Jongsun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.101-106
    • /
    • 2014
  • This paper presents a wide dynamic range radio-frequency (RF) root-mean-square (RMS) power detector using an automatic gain control (AGC) loop. The AGC loop consists of a variable gain amplifier (VGA), RMS conversion block and gain control block. The VGA exploits dB-linear gain characteristic of the cascade VGA. The proposed circuit utilizes full-wave squaring and generates a DC voltage proportional to the RMS of an input RF signal. The proposed RMS power detector operates from 500MHz to 5GHz. The detecting input signal range is from 0 dBm to -70 dBm or more with a conversion gain of -4.53 mV/dBm. The proposed RMS power detector is designed in a 65-nm 1.2-V CMOS process, and dissipates a power of 5 mW. The total active area is $0.0097mm^2$.

A Research about Implementation of Fuzzy Control Algorithm with Variable Input Gain for Improving Performance of Tension Control (장력제어 성능개선을 위한 가변 입력이득 퍼지제어알고리즘 적용에 관한 연구)

  • Sul, Jae-Hoon;Park, Jong-Oh;Jang, Jong-Seung;Lim, Young-Do
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.680-688
    • /
    • 2001
  • In this paper, the fuzzy control with variable input gain is applied to maintain the consistent tension in the process of taking up and releasing texture. In the process of discharging web on one side rolling it on another, the take-up drum gets smaller on the release drum side as it gets bigger on the rolling side, thus it is necessary to change the balance of velocity between the sides. In order to solve the problem a tension controller is necessary. The PI control method has been employed to maintain the consistent tension, but the PI control method produces a problem which requires an experienced worker with the traits of the machine, in order to perform the fine adjustments according to the environment of the process. For solving the above problem, we apply fuzzy control to the tension system, in order to produce a uniform roll. For the performance test, the fuzzy controller does not need to revise the parameters. Therefore the fuzzy controller exhibits an excellent additivity for the tension system where the system is changed with time.

  • PDF

A Single-Stage 37 dB-Linear Digitally-Controlled Variable Gain Amplifier for Ultrasound Medical Imaging

  • Cho, Seong-Eun;Um, Ji-Yong;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.579-587
    • /
    • 2014
  • This paper presents a variable gain amplifier (VGA) for an analog front-end (AFE) of ultrasound medical imaging. This VGA has a closed-loop topology and shows a 37-dB-linear characteristic with a single-stage amplifier. It consists of an op-amp, a non-binary-weighted capacitor array, and a gain-control block. This non-binary-weighted capacitor array reduces the required number of capacitors and the complexity of the gain-control block. The VGA has been fabricated in a 0.35-mm CMOS process. This work gives the largest gain range of 37 dB per stage, the largest P1 dB of 9.5 dBm at the 3.3-V among the recent VGA circuits available in the literature. The voltage gain is controlled in the range of [-10, 27] dB in a linear-in-dB scale with 16 steps by a 4-bit digital code. The VGA has a bandpass characteristic with a passband of [20 kHz, 8 MHz].

Gain Scheduling in a 6-Axis Articulated Robot Based on LabVIEW (LabVIEW 기반 6축 수직다관절 로봇의 게인스케쥴링 구현 연구)

  • Kim, M.S.;Chung, W.J.;Kim, S.B.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.318-324
    • /
    • 2014
  • Recent years have witnessed a growing demand for a wide variety of high-performance industrial robots. In this paper, for accurate gain tuning of a 6-axis articulated industrial robot with reduced noise, a program routine for a dynamic signal analyzer (DSA) using the frequency response method will be programmed using $LabVIEW^{(R)}$. Then, robot transfer functions can be obtained experimentally using the frequency response method with the DSA program. Data from the robot transfer functions are transformed into Bode plots, based on which an optimal gain tuning will be executed. Gain tuning can enhance the response quality of the output signal for a given input signal during real-time control of the robot. The effectiveness of our proposed technique will be verified by implementation with a (lab-manufactured) 6-axis articulated industrial robot (hereinafter called "RS2") and comparison with the zero position gain tuning, as well as other positions.

Joint Position Control using ZMP-Based Gain Switching Algorithm for a Hydraulic Biped Humanoid Robot (유압식 이족 휴머노이드 로봇의 ZMP 기반 게인 스위칭 알고리즘을 이용한 관절 위치 제어)

  • Kim, Jung-Yup;Hodgins, Jessica K.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1029-1038
    • /
    • 2009
  • This paper proposes a gain switching algorithm for joint position control of a hydraulic humanoid robot. Accurate position control of the lower body is one of the basic requirements for robust balance and walking control. Joint position control is more difficult for hydraulic robots than it is for electric robots because of an absence of reduction gear and better back-drivability of hydraulic joints. Backdrivability causes external forces and torques to have a large effect on the position of the joints. External ground reaction forces therefore prevent a simple proportional-derivative (PD) controller from realizing accurate and fast joint position control. We propose a state feedback controller for joint position control of the lower body, define three modes of state feedback gains, and switch the gains according to the Zero Moment Point (ZMP) and linear interpolation. Dynamic equations of hydraulic actuators were experimentally derived and applied to a robot simulator. Finally, the performance of the algorithm is evaluated with dynamic simulations.