• Title/Summary/Keyword: Control cooling

Search Result 1,408, Processing Time 0.034 seconds

A Study on the System Integration and Control Method of Radiant floor Cooling in Apartment Buildings (공동주택에서 바닥복사냉방의 시스템 구성과 제어 방안에 관한 연구)

  • 조영흠;석호태;김광우;여명석
    • Journal of the Korean housing association
    • /
    • v.15 no.2
    • /
    • pp.107-115
    • /
    • 2004
  • The objective of this study is to show the system Integrations and control method for operation of the Radiant Floor Cooling. The systems for radiant floor cooling system consist of only using the radiant floor cooling and the radiant floor cooling integrated with a dehumidification system. And the study is suggested control method with composed radiant floor cooling system through simulations. Radiant floor cooling systems compose of four main parts: an existing radiant heating panel, manifold, cooling source and controller, and sensors. If dehumidifying or supplementary cooling is needed, additional equipments such as PAC and AHU are needed. Simulation results show that control method only using radiant floor cooling system can prevent condensation and set room air temperature with the exception of hot and humid periods and control method using the radiant floor cooling integrated with a dehumidification system is comfort thermal environments and can reduce the cooling load quickly, moreover, show comfort control method to meet various cooling operation situations.

An Experimental Study on Control Performance of Radiant Floor Cooling Using Ondol (온돌을 이용한 바닥복사냉방의 제어성능에 관한 실험적 연구)

  • 김용이;임재한;한여명;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1165-1173
    • /
    • 2001
  • The objectives of this study are to analyze the application of radiant floor cooling and to evaluate the control methods through experiments when the radiant heating system is used for cooling. Through the experiment analysis the control methods such as on/off control, variable flow control and outdoor reset with indoor temperature feedback control are evaluated and compared. The cooling curve (reset ratio) is found for radiant cooling, which shows tole relation between outside air temperature and supply water temperature. Comparison of cooling methods shows that outdoor reset with indoor temperature feedback control is more appropriate than on/off control and variable flow control with regard to prevention of the condensation and thermal comfort.

  • PDF

Cooling Efficiency of Low Pressure Compressed Air Fogging System in Naturally Ventilated Greenhouses (저압 에어포그 시스템을 설치한 온실의 냉방효율)

  • Nam, Sang-Woon;Kim, Young-Shik;Sung, In-Mo;Ko, Gi-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.49-55
    • /
    • 2012
  • In order to derive the efficient utilization of low pressure compressed air fogging system, cooling efficiencies with control types were analyzed through cooling experiments in tomato greenhouses. The control types were set up with temperature control, humidity control, temperature and humidity control, and time control. It showed that the cooling effects were 0.7 to $3.3^{\circ}C$ on average and maximum of 4.3 to $7.0^{\circ}C$, the humidification effects were 3.5 to 13.5 % on average and maximum of 14.3 to 24.4 %. Both the cooling and humidification effect were the highest in the time control method. The cooling efficiency of the air fogging system was not high with 8.3 to 27.3 % on average. However, the cooling efficiency of 24.6 to 27.3 % which appears from the time control is similar to the cooling efficiency of high pressure fogging system experimented in Japan. The air fogging system is operated by low pressure, but its efficiency is similar to high pressure. We think because it uses compressed air. From this point of view, we suggest that the air fogging system can get the cooling efficiency of similar levels to that of high pressure fogging system and it will have an advantage from clogging problem of nozzle etc.

Hydartion Heat Control with Closed Loop Pipe Cooling System (냉각수 순환 형태의 파이프 쿨링 공법을 이용한 매스콘크리트 수화열 제어)

  • 박찬규;손상현;이승훈;장기욱;정재홍;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.403-408
    • /
    • 2001
  • In order to control hydration heat in mass concrete, pipe cooling method has been widely used. However, open pipe cooling system cannot be applied to the mass concrete structures when cooling water supply is difficult. To control hydration heat of high strength mass foundation, closed loop pipe cooling system was developed to solve the cooling water supply. This paper reports the performance result of hydration heat control with closed loop pipe cooling system.

  • PDF

Temperature Control of Aluminum Plate by PWM Current Control of Peltier Module (펠티어 소자의 PWM 전류제어를 이용한 알루미늄 판의 온도제어)

  • Pang, Du-Yeol;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.60-67
    • /
    • 2006
  • This paper presents the temperature control in aluminum plate with Peltier module. From the experimental work, Peltier module is used to control the temperature of small aluminum plate for both heating and cooling with the control of current and fan ON/OFF. And current control of Peltier module was accomplished by PWM method. As a result of experiments, it is proper that operate cooling fan only while cooling duration and there exist a proper cooling current to drop temperature rapidly. It takes about 125sec to control temperature of aluminium plate between $30^{\circ}C$ and $70^{\circ}C$ and about 70sec between $40^{\circ}C$ and $60^{\circ}C$, in ambient temperature $28^{\circ}C{\sim}29^{\circ}C$ while cooling fan is operated only cooling duration. With the cooling current, temperature control of aluminum plate was accomplished more rapidly in comparison without cooling current. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier module as a heating and cooling source.

The Intelligent Control Algorithm of a Transformer Cooling System (변압기 냉각시스템의 지능제어알고리즘)

  • Han, Do-Young;Won, Jae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.515-522
    • /
    • 2010
  • In order to improve the efficiency of a transformer cooling system, the intelligent algorithm was developed. The intelligent algorithm is composed of a setpoint algorithm and a control algorithm. The setpoint algorithm was developed by the neural network, and the control algorithm was developed by the fuzzy logic. These algorithms were used for the control of a blower and an oil pump of the transformer cooling system. In order to analyse performances of these algorithms, the dynamic model of a transformer cooling system was used. Based on various performance tests, energy savings and stable controls of a transformer cooling system were observed. Therefore, control algorithms developed for this study may be effectively used for the control of a transformer cooling system.

Water Quality Control System Development for Cooling Towers (냉각탑 수질관리를 위한 자동화 시스템 개발)

  • Lee, Ki-Keon;Song, Moo-Jun;Lee, Young-Jae;Sung, Sang-Kyung;Kang, Tae-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.36-41
    • /
    • 2008
  • Cooling tower is an important equipment of the cooling systems for large buildings like factory and department store. Water used for cooling in cooling tower is reused continuously. If the water is polluted, corrosion and scale can happen at equipments and pipes. In order to prevent this problem, it is necessary to control the water quality using chemicals. To control the water quality, an automatic control system is designed, fabricated, and experimented. The control system is based on an imbedded microcontroller. Relays are used for power driving, an LCD and LED for display, and RS485 for remote data acquisition. Monitoring program is also developed for easy man-machine interface and extraction of data stored in the imbedded processor and EEPROM. The control system calculates amounts of chemicals necessary using sensor data and injects the chemicals into the cooling tower on proper time. The developed water quality control system is expected to reduce cost of maintenance and extend the lifetime of the cooling systems with low cost.

Control strategy for economic operation of an ice-storage system considering cooling load variation (냉방부하 변동을 고려한 빙축열시스템의 경제적 운전방식)

  • 정성훈;이대영;강병하;김우승
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.140-149
    • /
    • 2000
  • A comparative analysis was peformed on the operation cost at partial loads between ice storage systems with the two conventional control strategies, i.e., storage priority and chiller priority. The storage priority control is shown to be more economic for small cooling loads, while the chiller priority control is superior when the cooling load is as large as the design value. Based on this finding, a new control strategy is devised for an ice-storage system to minimize the operation cost at any cooling load. The new control strategy is found to be comparable to the chiller priority for large cooling loads, while it is more economic for small loads compared to the conventional control strategies. The practicality of the new control strategy is also confirmed through a performance test applying the new control strategy to an existing ice-storage system.

  • PDF

Characteristic of Refrigerant for Heat-treatment Deformation Control of SCM415 Steel (SCM415강의 열처리 변형제어를 위한 냉각 매질의 특성)

  • Ahn, Min-ju;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.59-65
    • /
    • 2010
  • This study deals with the characteristic of refrigerant for heat-treatment deformation control of SCM415 steel. The control of heat-treatment deformation must need the progress of production parts for an industry machine. Most of the deformation is occurred on unequal cooling. The unequal cooling is occurred by a property of quenching refrigeration. When a heated metal is deposited in the refrigeration, the cooling speed is so slow in early period of cooling because of occurring a steam-curtain. After more cooling, the steam-curtain is destroyed. In this progress, the cooling speed is very fast. The object of this study is to control the deformation of heat-treatment for the part of the industry machine by improving the conditions of quenching. The cooling curves and cooling rates of water, oil and polymer solution are obtained and illustrated. From the characteristics of the quenching refrigerant, the effects of heat-treatments on the thermal deformation and fatigue strength are also investigated.

Optimal Control Algorithms for the Full Storage Ice Cooling System (전축열방식 빙축열 시스템의 최적제어 알고리즘)

  • 한도영;이준호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.350-357
    • /
    • 2002
  • Optimal control algorithms for the full storage ice cooling system were developed by using a dynamic simulation program. Control algorithms for the storage charging mode were developed for the chiller outlet temperature setpoint control and the chiller capacity control. Control algorithms for the storage discharging mode were developed for the proper mode selection, the storage-only mode control, and the storage-priority chiller-shared mode control. Two different cases of the expected outdoor air temperature profile and the expected cooling load profile were used to analyze the effectiveness of these algorithms. Simulation results show the energy savings and the satisfactory controls of the ice storage system. Therefore, control algorithms developed for this study may effectively be used for the improved control of the ice storage cooling system.