• Title/Summary/Keyword: Control circuit

Search Result 3,859, Processing Time 0.028 seconds

A Low cost Sensorless Control Circuit for Permanent Magnet Synchronous Motor (영구자석 동기 전동기의 염가형 센서리스 제어회로)

  • 양순배
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.434-438
    • /
    • 2000
  • In this paper the low cost sensorless control circuit for a PM synchronous motor without the mechanical rotor position sensors is presented. The sensorless control algorithm and position detection circuit for the sinusoidal current wave drive is more complex than that of the rectangular current wave drive. The proposed position sensing circuit is composed of an operational amplifier and several passive elements. The design procedures for getting the optimal parameters for the position sensing circuit are presented. The performance of the proposed algorithm is verified through the simulations and experiments.

  • PDF

The Advantage of renovation from Track Circuit Based Train Control to Communication Based Train Control (궤도회로기반 시스템에서 통신기반 시스템으로의 개량사업에 대한 장점)

  • Min, Jun-Sung;Lee, Jin-Haeng;Kang, Lee-Teag;Yoo, Young-Jun
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1327-1332
    • /
    • 2008
  • Nowadays, the technology development of communication and system engineering should impact on the Train Control System(TCS). The one of main developments in TCS is the Communication Based Train Control(CBTC), which does not depend on the track circuit. Currently, there are the project to modernize TCS as CBTC system from the track circuit system around the world. In Korea, there are the new CBTC system revenue projects such as Busan-Gimhae LRT, Sin-Bundang Line, and so on. There is also Government project called Maglev Line in Daejeon, which is applied CBTC system. Through the examples of world TCS renovation, it is expected to modernize the track circuit TCS system as CBTC system in Korea. Therefore, we would express the advantage of developing from the traditional TCS system to CBTC TCS system.

  • PDF

Development of Intelligent Gripper Control Device to Safely Grip Unknown Objects (미지물체를 안전하게 잡기 위한 지능형 그리퍼의 제어장치 개발)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.31-38
    • /
    • 2022
  • In this study, we designed and manufactured an intelligent gripper-control device to safely grip unknown objects. The gripper control device consists of a DSP circuit, power supply circuit, communication circuit, and amplifier circuit diagrams. The DSP is used because the values of the 3-axis force sensor to which the gripper is attached are measured and calculated at high speeds. The gripping force is determined based on this value, and the object must be safely gripped with the determined value. A basic characteristic test of the control device of the manufactured intelligent gripper was conducted, and it was confirmed that it operated safely.

A Continuous Conduction mode/Critical Conduction Mode Active Power Factor Correction Circuit with Input Voltage Sensor-less Control (입력전압을 감지하지 않는 전류연속/임계동작모드 Active Power Factor Correction Circuit)

  • Roh, Yong-Seong;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.151-161
    • /
    • 2013
  • An active power factor correction (PFC) circuit is presented which employs a newly proposed input voltage sensor-less control technique operated in continuous conduction mode (CCM) and critical conduction mode (CRM). The conventional PFC circuit with input voltage sensor-less control technique degrades the power factor (PF) under the light load condition due to DCM operation. In the proposed PFC circuit, the switching frequency is basically 70KHz in CCM operation. In light load condition, however, the PFC circuit operates in CRM and the switching frequency is increased up to 200KHz. So CCM/CRM operation of the PFC circuit alleviates the decreasing of the PF in light load condition. The proposed PFC controller IC has been implemented in a $0.35{\mu}m$ BCDMOS process and a 240W PFC prototype is built. Experimental results shows the PF of the proposed PFC circuit is improved up to 10% from the one employing the conventional CCM/DCM dual mode control technique. Also, the PF is improved up to 4% in the light load condition of the IEC 61000-3-2 Class D specifications.

DC Motor Drive with Circuit Balancing Technique to Reduce Common Mode Conducted Noise

  • Jintanamaneerat, Jintanai;Srisawang, Arnon;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1881-1884
    • /
    • 2003
  • In some requirements of dc motor drive circuit applications are high quality output with generation of low internal conducted EMI. However the conventional dc motor drive circuits have been usually using unbalanced circuit which generates the high conducted EMI to the frame ground. This paper presents a balanced dc motor drive circuit which is effective way to reduce the common-mode noise. The circuit balancing is to make the noise pick up or occurring in both conductor lines, signal path and return path is equal in amplitude and opposite phase so that it will cancel out in the frame ground. The common-mode conducted noise reduction of this proposed dc motor drive is confirmed by experimental results.

  • PDF

압력제어솔레노이드밸브를 이용한 직접구동 방식의 유압회로에 의한 자동변속기의 변속품질 향상에 관한 연구

  • 김정관;한명철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.577-580
    • /
    • 1995
  • This paper suggests direct-acting hydraulic circuit to control clutches and brakes in automatic transmission. As only one pressure control valve controls the pressure of several friction elements with accumulators in conventional hydraulic circuit, the controllable range is limited. In addition, it is difficult to control the fine timing between apply clutch and release clutch. So, we designed new method to control the pressure of clutch which uses ressure control valve and pressure control solenoid valve independently in each friction element. through this structure improvement of hydraulic circuit, we can control the pressure of clutches and brakes finely and fine timing of between apply clutch and release clutch.

  • PDF

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.

A high speed embedded SRAM with improve dcontrol circuit and sense amplifier (개선된 control circuit과 sense amplifier를 갖는 고속동작 embedded SRAM의 설계)

  • 김진국;장일권;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.538-541
    • /
    • 1998
  • This paper describes the development of 5.15ns 32kb asynchronous CMOS SRAM using 0.6.mu.m CMOS technology. The proposed high speed embedded SRAM is realized with optimized control circuit and sense amplifier at a power supply of 3V. Using proposed control circuit, the delay time from address input to wordline 'on' is reduced by 33% and mismatch-insensitive sense amplifier can sense a small difference of bit-line voltage fast and stably.

  • PDF

Digitalization of the phase Control Circuit of a three-phase Controlled Rectifier (삼상제어력유기 입상 제어회로의 디지털화)

  • 박민호;정승기;김기택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.2
    • /
    • pp.107-113
    • /
    • 1987
  • A complete design of a new digital control circuit for a three-phase controlled rectifier is presented. The circuit consists of a gating signal generating ROM, down counter and adder. Proposed scheme is simple and quite adequate to the microprocessor-based digitally controlled systems. The basic principle and operation characteristics of the circuit are described and experimental-results show good dynamic performance. Synchronization problem with noisy reference is also discussed. The basic phylosophy developed can be extended to the other phase control system, e.g., cycloconverters, ac voltoge controllers, etc.

A Design of Temperature Sensor Circuit Using CMOS Process (CMOS 공정을 이용한 온도 센서 회로의 설계)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1117-1122
    • /
    • 2009
  • In this work, temperature sensor and control circuit for measuring temperature are proposed. The proposed circuit can be fabricated without additional CMOS fabrication process and the output of proposed circuit is digital value. The supply voltage is 5volts and the circuit is designed by using 0.5${\mu}m$ CMOS process. The circuit for measuring temperature consists of PWM control circuit, VCO, counter and register. consisted The frequency of PWM control circuit is 23kHz and the frequency of VCO is 416kHz, 1MHz and 2MHz, respectively. The circuit operation is analyzed by using SPICE.