• 제목/요약/키워드: Control Target

검색결과 3,964건 처리시간 0.029초

목표물의 불확실성과 제어루프 특성을 고려한 추정기 기반 적응 유도기법 (Observer-Based Adaptive Guidance Law Considering Target Uncertainties and Control Loop Dynamics)

  • 최진영;좌동경
    • 제어로봇시스템학회논문지
    • /
    • 제10권8호
    • /
    • pp.680-688
    • /
    • 2004
  • This paper proposes an observer-based method for adaptive nonlinear guidance. Previously, adaptive nonlinear guidance law is proposed considering target maneuver and control loop dynamics. However, several information of this guidance law is not available, and therefore needs to be estimated for more practical application. Accordingly, considering the unavailable information as bounded time-varying uncertainties, an integrated guidance and control model is re-formulated in normal form with respect to available states including target uncertainties and control loop dynamics. Then, a nonlinear observer is designed based on the integrated guidance and control model. Finally, using the estimates for states and uncertainties, an observer-based adaptive guidance law is proposed to guarantee the desired interception performance against maneuvering target. The proposed approach can be effectively used against target maneuver and the limited performance of control loop. The stability analyses and simulations of the proposed observer and guidance law are included to demonstrate the practical application of our scheme.

UAV-UGV의 협업제어를 위한 향상된 Target Tracking에 관한 연구 (Study on the Improved Target Tracking for the Collaborative Control of the UAV-UGV)

  • 최재영;김성관
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.450-456
    • /
    • 2013
  • This paper suggests the target tracking method improved for the collaboration of the quad rotor type UAV (Unmanned Aerial Vehicle) and omnidirectional Unmanned Ground Vehicle. If UAV shakes or UGV moves rapidly, the existing method generates a phenomenon that the tracking object loses the tracking target. To solve the problems, we propose an algorithm that can track continually when they lose the target. The proposed algorithm stores the vector of the landmark. And if the target was lost, the control signal was inputted so that the landmark could move continuously to the direction running out. Prior to the experiment, Proportional and integral control were used in 4 motors in order to calibrate the Heading value of the omnidirectional mobile robot. The landmark of UGV was recognized as the camera adhered to UAV and the target was traced through the proportional-integral-derivative control. Finally, the performance of the target tracking controller and proposed algorithm was evaluated through the experiment.

목표물의 불확실성과 제어루프 특성을 고려한 비선형 적응 유도기법 (Adaptive Nonlinear Guidance Considering Target Uncertainties and Control Loop Dynamics)

  • 좌동경;최진영;송찬호
    • 제어로봇시스템학회논문지
    • /
    • 제9권4호
    • /
    • pp.320-328
    • /
    • 2003
  • This paper proposes a new nonlinear adaptive guidance law. Fourth order state equation for integrated guidance and control loop is formulated considering target uncertainties and control loop dynamics. The state equation is further changed into the normal form by nonlinear coordinate transformation. An adaptive nonlinear guidance law is proposed to compensate for the uncertainties In both target acceleration and control loop dynamics. The proposed law adopts the sliding mode control approach with adaptation fer unknown bound of uncertainties. The present approach can effectively solve the existing guidance problem of target maneuver and the limited performance of control loop. We provide the stability analyses and demonstrate the effectiveness of our scheme through simulations.

최적제어를 이용한 목표점 지향 유도 (Target Pointing Guidance using Optimal Control)

  • 황익호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권7호
    • /
    • pp.881-888
    • /
    • 1999
  • Target pointing guidance steers a vehicle to point at a target point at a given range Rs. In this paper, vehicle's motions relative to the target point are modeled by differential equations. Then a target pointing guidance law is derived using optimal control theories. In addition, it is shown that the proposed guidance law can achieve the goal of target pointing guidance whatever initial headings are.

  • PDF

혼합 비주얼 서보 제어 기법을 이용한 이동로봇의 목표물 추종 (Target Tracking of the Wheeled Mobile Robot using the Combined Visual Servo Control Method)

  • 이호원;권지욱;홍석교;좌동경
    • 전기학회논문지
    • /
    • 제60권6호
    • /
    • pp.1245-1254
    • /
    • 2011
  • This paper proposes a target tracking algorithm for wheeled mobile robots using in various fields. For the stable tracking, we apply a vision system to a mobile robot which can extract targets through image processing algorithms. Furthermore, this paper presents an algorithm to position the mobile robot at the desired location from the target by estimating its relative position and attitude. We show the problem in the tracking method using the Position-Based Visual Servo(PBVS) control, and propose a tracking method, which can achieve the stable tracking performance by combining the PBVS control with Image-Based Visual Servo(IBVS) control. When the target is located around the outskirt of the camera image, the target can disappear from the field of view. Thus the proposed algorithm combines the control inputs with of the hyperbolic form the switching function to solve this problem. Through both simulations and experiments for the mobile robot we have confirmed that the proposed visual servo control method is able to enhance the stability compared to of the method using only either PBVS or IBVS control method.

무인 항공기의 목표물 추적을 위한 영상 기반 목표물 위치 추정 (Vision Based Estimation of 3-D Position of Target for Target Following Guidance/Control of UAV)

  • 김종훈;이대우;조겸래;조선영;김정호;한동인
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1205-1211
    • /
    • 2008
  • This paper describes methods to estimate 3-D position of target with respect to reference frame through monocular image from unmanned aerial vehicle (UAV). 3-D position of target is used as information for surveillance, recognition and attack. In this paper. 3-D position of target is estimated to make guidance and control law, which can follow target, user interested. It is necessary that position of target is measured in image to solve 3-D position of target. In this paper, kalman filter is used to track and output position of target in image. Estimation of target's 3-D position is possible using result of image tracking and information of UAV and camera. To estimate this, two algorithms are used. One is methode from arithmetic derivation of dynamics between UAV, carmer, and target. The other is LPV (Linear Parametric Varying). These methods have been run on simulation, and compared in this paper.

Development of Low-Cost Automatic Flight Control System for Unmanned Target Drone

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.367-371
    • /
    • 2004
  • This paper describes development of automatic flight control system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated now days use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of automatic flight control system is verified by flight test.

  • PDF

A Modified Target Costing Technique to Improve Product Quality from Cost Consideration

  • Wu, Hsin-Hung
    • International Journal of Quality Innovation
    • /
    • 제6권2호
    • /
    • pp.31-45
    • /
    • 2005
  • The target costing technique, mathematically discussed by Sauers, only uses the $C_p$ index along with Taguchi loss function and ${\bar{X}}-R$ control charts to set up goal control limits. The new specification limits derived from Taguchi loss function is linked through the $C_p$ value to ${\bar{X}}-R$ control charts to obtain goal control limits. This study further considers the reflected normal loss function as well as the $C_{pk}$ index along with its lower confidence interval in forming goal control limits. With the use of lower confidence interval to replace the point estimator of the $C_{pk}$ index and reflected normal loss function proposed by Spiring to measure the loss to society, this modified and improved target costing technique would become more robust and applicable in practice. Finally, an example is provided to illustrate how this modified and improved target costing technique works.

A Multi-target Tracking Algorithm for Application to Adaptive Cruise Control

  • Moon Il-ki;Yi Kyongsu;Cavency Derek;Hedrick J. Karl
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1742-1752
    • /
    • 2005
  • This paper presents a Multiple Target Tracking (MTT) Adaptive Cruise Control (ACC) system which consists of three parts; a multi-model-based multi-target state estimator, a primary vehicular target determination algorithm, and a single-target adaptive cruise control algorithm. Three motion models, which are validated using simulated and experimental data, are adopted to distinguish large lateral motions from longitudinally excited motions. The improvement in the state estimation performance when using three models is verified in target tracking simulations. However, the performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. The MTT-ACC system is tested under lane changing situations to examine how much the system performance is improved when multiple models are incorporated. Simulation results show system response that is more realistic and reflective of actual human driving behavior.