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OPTIMAL CONTROL FOR SELF-ORGANIZING TARGET

DETECTION MODEL IN THE 1D CASE

Sang-Uk Ryu

Abstract. This paper is concerned with the optimal control problem

associated to the self-organizing target detection model in 1D domains.

That is, we show the global existence of weak solution and the existence
of optimal control.

1. Introduction

In this paper we consider the following optimal control problem:

(P) minimize J(u, v)

with the cost functional J(u, v) of the form

J(u, v) =

∫ T

0

‖y(u, v)− yd‖2H1(I)dt+ γ

∫ T

0

(
‖u‖2H1(I) + ‖v‖2H1(I)

)
dt,

where y = y(u, v), ρ = ρ(u, v) and w = w(u, v) are governed by

∂y

∂t
= a1

∂2y

∂x2
− ∂

∂x

[
y
( ∂
∂x
χ1(ρ)− ∂

∂x
χ2(w)

)]
in I × (0, T ],

∂ρ

∂t
= a2

∂2ρ

∂x2
+ g1T (x)y − dρ+ u in I × (0, T ], (1.1)

∂w

∂t
= a3

∂2w

∂x2
+ g2y − hw + v in I × (0, T ],

∂y

∂x
=
∂ρ

∂x
=
∂w

∂x
= 0 on ∂I × (0, T ],

y(x, 0) = y0(x), ρ(x, 0) = ρ0(x), w(x, 0) = w0(x) in I.

Here, I = (0, L) is a bounded interval in R. y = y(x, t) is the density of biopar-
ticles in I at time t. ρ = ρ(x, t) is the concentration of chemical attractants
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in I at time t. w = w(x, t) is the concentration of chemical repellents in I at

time t. − ∂
∂x

[
y
(
∂
∂xχ1(ρ)− ∂

∂xχ2(w)
)]

indicates that bioparticles are affected by

chemical attractants and chemical repellents. χ1(ρ) and χ2(w) are the sensi-
tivity functions of biopatricles to chemical attractants and chemical repellents.
g1T (x)y indicates that the bioparticles produce chemical attractant when they
find the target T (x). g2y indicates that bioparticles release chemical repellents.
−dρ is decay rate of chemical attractants. −hw is decay rate of chemical repel-
lents. u and v are the control functions.

We assume that χ1(ρ) and χ2(w) are real smooth functions satisfying

sup
0≤ρ<∞

∣∣∣diχ1(ρ)

dρi

∣∣∣ <∞ and sup
0≤w<∞

∣∣∣diχ2(w)

dwi

∣∣∣ <∞ for i = 1, 2, (1.2)

and T (x) satisfies

0 ≤ T (x) ≤ 1 and T (x) ∈ H1(I). (1.3)

The model (1.1) was introduced by Okaie et al. [3] to develop a mathematical
model of mobile bionanosensor networks for target tracking. (1.1) was influenced
by Keller-Segel equations [2]. In [1], author showed that the global existence
of the C1 solution for (1.1) and the existence of exponential attractors in 1D
domains. In [5], Ryu and Yagi studied the optimal control problem governed by
Keller-Segel equations. In this paper we consider the optimal control problem
for (1.1) in 1D domains. That is to say, we show the global existence of weak
solution and the existence of the optimal control.

2. Local existence of weak solution

In this section, we will show local existence of weak solution to model (1.1).

Let A1 = −a1
∂2

∂x2 + 1 and A2 = −a2
∂2

∂x2 + d and A3 = −a3
∂2

∂x2 + h with the

same domain D(Ai) = H2
n(I) = {z ∈ H2(I); ∂z∂x (0) = ∂z

∂x (L) = 0} (i = 1, 2, 3).
We set three product Hilbert spaces V ⊂ H = H′ ⊂ V ′ as

V = H1(I)×H2
n(I)×H2

n(I), H = L2(I)×H1(I)×H1(I),

and

V ′ = (H1(I))′ × L2(I)× L2(I).

Also, we set a symmetric bilinear form on V × V:

a(Y, Ỹ ) = a1

∫
I

dy

dx

dỹ

dx
dx+

∫
I

yỹdx+
(
A2ρ,A2ρ̃

)
L2(I)

+
(
A3w,A3w̃

)
L2(I)

,
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where Y =

yρ
w

 , Ỹ =

 ỹρ̃
w̃

 ∈ V. Obviously, the form satisfies

|a(Y, Ỹ )| ≤M‖Y ‖V‖Ỹ ‖V , Y, Ỹ ∈ V, (a.i)

a(Y, Y ) ≥ δ‖Y ‖2V , Y ∈ V (a.ii)

with constants δ,M > 0.

Then, this form defines a linear isomorphism A =

A1 0 0
0 A2 0
0 0 A3

 from V

to V ′, and the part of A in H is a positive definite self-adjoint operator in H.
We consider the following semilinear problem

dY

dt
+AY = F (Y ) + U(t), 0 < t ≤ T,

Y (0) = Y0

in the space V ′. Here, F (·) : V → V ′ is the mapping

F (Y ) =

y − ∂
∂x

[
y
(
∂
∂xχ1(ρ)− ∂

∂xχ2(w)
)]

g1T (x)y
g2y

 .

Y0 is defined by Y0 =

y0

ρ0

w0

 and U(t) =

 0
u(t)
v(t)

.

Then, F (·) is continuous function from V to V ′ satisfying for each η > 0,
there exists an increasing continuous function φη, ψη : [0,∞) → [0,∞) such
that

‖F (Y )‖V′ ≤ η‖Y ‖V + φη(‖Y ‖H), Y ∈ V (2.1)

and

‖F (Ỹ )− F (Y )‖V′ ≤ η‖Ỹ − Y ‖V
+ (‖Ỹ ‖V + ‖Y ‖V + 1)ψη(‖Ỹ ‖H + ‖Y ‖H)‖Ỹ − Y ‖H, Ỹ , Y ∈ V. (2.2)

Indeed, since χi(·)(i = 1, 2) are smooth function, we obtain that

‖χi(ρ)‖H1(I) ≤ p(‖ρ‖H1(I)), ρ ∈ H1(I), (2.3)

‖χi(ρ)‖H2(I) ≤ p(‖ρ‖H1(I))(‖ρ‖H2(I) + 1) ρ ∈ H2(I) (2.4)

and

‖χi(ρ1)− χi(ρ2)‖H1(I)

≤ p(‖ρ1‖H1(I) + ‖ρ2‖H1(I))‖ρ1 − ρ2‖H1(I), ρ1, ρ2 ∈ H1(I), (2.5)
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where p(·) is some continuous increasing function(see [4], [6]).
By using (2.3), we obtain∥∥∥ ∂
∂x

[
y
∂

∂x
χ1(ρ)

]∥∥∥
(H1(1))′

≤ C‖y‖L∞(I)‖χi(ρ)‖H1(I)

≤ C‖y‖1/2L2(I)‖y‖
1/2
H1(I)p(‖ρ‖H1(I)) ≤ ε‖y‖H1(I) + Cε‖y‖L2(I)p(‖ρ‖H1(I))

with an arbitary ε > 0. And by using (1.3), we have

‖T (x)y‖L2(I) ≤ C‖T (x)‖L∞(I)‖y‖L2(I) ≤ C‖y‖L2(I).

Therefore, (2.1) is satisfied. Similarily, by (1.3), (2.4) and (2.5) we obtain∥∥∥ ∂
∂x

[
y1

∂

∂x
χ1(ρ1)− y2

∂

∂x
χ1(ρ2)

]∥∥∥
(H1(1))′

≤C‖y1 − y2‖L2(I)‖χi(ρ1)‖H2(I) + C‖y2‖H1(I)‖χi(ρ1)− χi(ρ2)‖H1(I)

≤C‖y1 − y2‖L2(I)p(‖ρ1‖H1(I))(‖ρ1‖H2(I) + 1)

+ ‖y2‖H1(I)p(‖ρ1‖H1(I) + ‖ρ2‖H1(I))‖ρ1 − ρ2‖H1(I)

and

‖T (x)(y1 − y2)‖L2(I) ≤ C‖T (x)‖L∞(I)‖y1 − y2‖L2(I) ≤ C‖y1 − y2‖L2(I).

Hence, the condition (2.2) is fulfilled.

Then, we obtain the following result.

Theorem 2.1. For any Y0 ∈ H with y0, ρ0, w0 ≥ 0 and U ∈ L2(0, T ;V ′) with
u, v ≥ 0 , (1.1) has a unique local weak solution

0 ≤ y ∈ H1(0, T (Y0, U); (H1(I))
′
) ∩ C([0, T (Y0, U)];L2(I)) ∩ L2(0, T (Y0, U);H1(I)),

0 ≤ ρ ∈ H1(0, T (Y0, U);L2(I)) ∩ C([0, T (Y0, U)];H1(I)) ∩ L2(0, T (Y0, U);H2
n(I)),

0 ≤ w ∈ H1(0, T (Y0, U);L2(I)) ∩ C([0, T (Y0, U)];H1(I)) ∩ L2(0, T (Y0, U);H2
n(I)),

the number T (Y0, U) ∈ (0, T ] is determined by the norms ‖Y0‖H, ‖U‖L2(0,T ;V′).

Proof. Since (a.i), (a.ii), (2.1) and (2.2) are satisfied, we obtain from ([5,
Theorem 2,1]) that for any Y0 ∈ H and U ∈ L2(0, T ;V ′), (1.1) has a unique
local weak solution

Y ∈ H1(0, T (Y0, U);V ′) ∩ C([0, T (Y0, U)];H) ∩ L2(0, T (Y0, U);V),

the number T (Y0, U) ∈ (0, T ] is determined by the norms ‖Y0‖H, ‖U‖L2(0,T ;V′).

The remaining part is the positivity of the solutions. Denote y− = max(−y, 0).
Multiply the first equation of (1.1) by−y− and integrate the product in I. Then,
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we have

1

2

d

dt

∫
I

|y−|2dx+ a1

∫
I

∣∣∣∂y−
∂x

∣∣∣2dx
=

∫
I

∂

∂x

[
y
( ∂
∂x
χ1(ρ)− ∂

∂x
χ2(w)

)]
y−dx

=

∫
I

∂y−

∂x
y
( ∂
∂x
χ1(ρ)− ∂

∂x
χ2(w)

)
dx

≤
(∫

I

∣∣∣∂y−
∂x

∣∣∣2dx)1/2(∫
I

|y−|2
∣∣∣( ∂
∂x
χ1(ρ)− ∂

∂x
χ2(w)

)∣∣∣2dx)1/2

≤ ε
∫
I

∣∣∣∂y−
∂x

∣∣∣2dx+ Cε

∫
I

|y−|2dx
∥∥∥( ∂
∂x
χ1(ρ)− ∂

∂x
χ2(w)

)∥∥∥2

L∞(I)

≤ ε
∫
I

∣∣∣∂y−
∂x

∣∣∣2dx+ Cε

∫
I

|y−|2dx
(∥∥∥ ∂
∂x
χ1(ρ)

∥∥∥2

H1(I)
+
∥∥∥ ∂
∂x
χ2(w)

∥∥∥2

H1(I)

)
≤ ε

∫
I

∣∣∣∂y−
∂x

∣∣∣2dx+ p̃(‖ρ‖H1(I) + ‖w‖H1(I))(‖ρ‖2H2(I) + ‖w‖2H2(I) + 1)

∫
I

|y−|2dx,

where p̃(·) is some continuous increasing function. If we take ε = a1
2 , then we

obtain

d

dt

∫
I

|y−|2dx ≤ p̃(‖ρ‖H1(I) + ‖w‖H1(I))(‖ρ‖2H2(I) + ‖w‖2H2(I) + 1)

∫
I

|y−|2dx.

By using Gronwall’s lemma, we have∫
I

|y−|2dx ≤ ‖y−(0)‖2L2(I)e
∫ S
0
p̃(‖ρ‖H1(I)+‖w‖H1(I))(‖ρ‖

2
H2(I)

+‖w‖2
H2(I)

+1)dt
.

Since y−(0) = 0, we obtain y ≥ 0. Similarily, multiply the second equation of
(1.1) by −ρ− and integrate the product in I. Then, we have

1

2

d

dt

∫
I

|ρ−|2dx+ a1

∫
I

∣∣∣∂ρ−
∂x

∣∣∣2dx
= −

∫
I

g1T (x)yρ−dx+ d

∫
I

|ρ−|2dx−
∫
I

uρ−dx.

Since y ≥ 0, T (x) ≥ 0 and u ≥ 0, we obtain

d

dt

∫
I

|ρ−|2dx ≤ d
∫
I

|ρ−|2dx.

By using Gronwall’s lemma, we have∫
I

|ρ−|2dx ≤ C‖ρ−(0)‖2L2(I).

Since ρ−(0) = 0, we obtain ρ ≥ 0. By using similar method for w. we can
obtain w ≥ 0. �
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3. Global existence of weak solution

In this section we will prove the global existence of weak solution to (1.1).

Theorem 3.1. For any (y0, ρ0, w0) ∈ L2(I)×H1(I)×H1(I) with y0, ρ0, w0 ≥ 0,
and 0 ≤ u, v ∈ L2(0, T ;H1(I)), (1.1) has a unique global weak solution

0 ≤ y ∈ H1(0, T ; (H1(I))
′
) ∩ C([0, T ];L2(I)) ∩ L2(0, T ;H1(I)),

0 ≤ ρ ∈ H1(0, T ;L2(I)) ∩ C([0, T ];H1(I)) ∩ L2(0, T ;H2
n(I)),

0 ≤ w ∈ H1(0, T ;L2(I)) ∩ C([0, T ];H1(I)) ∩ L2(0, T ;H2
n(I)).

Proof. Let y, ρ and w be any nonnegative weak solution as in Theorem 2.1
on an interval [0, S].

Step 1. Integrate the first equation of (1.1). Then, we have

d

dt
‖y‖L1(I) = 0.

That is,

‖y(t)‖L1(I) = ‖y0‖L1(I), 0 ≤ t ≤ S.
Step 2. Consider the following linear equation:

dρ

dt
+A2ρ = g1T (x)y + u, 0 < t ≤ S,

ρ(0) = ρ0

in the space (H1(I))′. Here, A2 is a positive definite self-adjoint operator from
H1(I) to (H1(I))′. e−tA2 is an analytic semigroup generated by A2 on H1(I)
with the estimate ‖e−tA2‖L((H1(I))′) ≤ Ce−dt, 0 ≤ t < ∞(see [6]). Then, ρ is
represented by

ρ(t) = e−tA2ρ0 + g1

∫ t

0

e−(t−s)A2T (x)y(s)ds+

∫ t

0

e−(t−s)A2u(s)ds

and

A2ρ(t) = e−tA2A2ρ0 + g1

∫ t

0

A
7
8
2 e
− (t−s)

2 A2e−
(t−s)

2 A2A
1
8
2 T (x)y(s)ds

+

∫ t

0

e−(t−s)A2A2u(s)ds.

Then, we have

‖A2ρ(t)‖(H1(I))′ ≤ C
[
e−dt‖A2ρ0‖(H1(I))′

+

∫ t

0

(t− s)− 7
8 e−

d
2 (t−s)‖T (x)y(s)‖L1(I)ds+

∫ t

0

e−d(t−s)‖A2u(s)‖(H1(I))′ds
]
.
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Therefore, we obtain from ‖T (x)y(s)‖L1(I) ≤ ‖T (x)‖L∞(I)‖y(s)‖L1(I) ≤ ‖y0‖L1(I)

and Hölder inequality that

‖ρ(t)‖H1(I)

≤ C
[
e−dt‖ρ0‖H1(I) + ‖y0‖L1(I) + ‖u(t)‖L2(0,T ;H1(I))

]
, 0 ≤ t ≤ S. (3.1)

By using similar method, we have

‖w(t)‖H1(I)

≤ C
[
e−dt‖w0‖H1(I) + ‖y0‖L1(I) + ‖v(t)‖L2(0,T ;H1(I))

]
, 0 ≤ t ≤ S. (3.2)

Step 3. Multifly the second equation of (1.1) by ρ and integrate the product
in I. Then, we have

1

2

d

dt

∫
I

ρ2dx+ a2

∫
I

∣∣∣∂ρ
∂x

∣∣∣2dx+ d

∫
I

ρ2dx = g1

∫
I

T (x)yρdx+

∫
I

uρdx

≤ C(g1‖T (x)‖L∞(I)

∫
I

y2dx+

∫
I

u2dx) +
d

2

∫
I

ρ2dx.

Multifly the second equation of (1.1) by ∂2ρ
∂x2 and integrate the product in I.

Then, we have

1

2

d

dt

∫
I

∣∣∣∂ρ
∂x

∣∣∣2dx+a2

∫
I

∣∣∣∂2ρ

∂x2

∣∣∣2dx+d

∫
I

∣∣∣∂ρ
∂x

∣∣∣2dx = g1

∫
I

T (x)y
∂2ρ

∂x2
dx+

∫
I

u
∂2ρ

∂x2
dx

≤ C(g1‖T (x)‖L∞(I)

∫
I

y2dx+

∫
I

u2dx) +
a2

2

∫
I

∣∣∣∂2ρ

∂x2

∣∣∣2dx.
If we take k1 = min{a2, d}. we obtain

d

dt
‖ρ(t)‖2H1(I)+k1‖ρ(t)‖2H1(I)+k1

∫
I

∣∣∣∂2ρ

∂x2

∣∣∣2dx ≤ C(‖y‖2L2(I)+‖u‖2H1(I)). (3.3)

Multifly the third equation of (1.1) by w and integrate the product in I. Then,
we have

1

2

d

dt

∫
I

w2dx+ a3

∫
I

∣∣∣∂w
∂x

∣∣∣2dx+ h

∫
I

w2dx = g2

∫
I

ywdx+

∫
I

vwdx

≤ C(

∫
I

y2dx+

∫
I

v2dx) +
h

2

∫
I

w2dx.

Multifly the third equation of (1.1) by ∂2w
∂x2 and integrate the product in I.

Then, we have

1

2

d

dt

∫
I

∣∣∣∂w
∂x

∣∣∣2dx+a3

∫
I

∣∣∣∂2w

∂x2

∣∣∣2dx+h

∫
I

∣∣∣∂w
∂x

∣∣∣2dx = g2

∫
I

y
∂2w

∂x2
dx+

∫
I

v
∂2w

∂x2
dx

≤ C(

∫
I

y2dx+

∫
I

v2dx) +
a3

2

∫
I

∣∣∣∂2w

∂x2

∣∣∣2dx.
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If we take k2 = min{a3, h}. we obtain

d

dt
‖w(t)‖2H1(I) + k2‖w(t)‖2H1(I) + k2

∫
I

∣∣∣∂2w

∂x2

∣∣∣2dx ≤ C(‖y‖2L2(I) + ‖v‖2H1(I)).

(3.4)
Step 4. We denote the notation

p1(Y,U) = p
(
‖ρ‖H1(I)+‖w‖H1(I)+‖y‖L1(I)+‖u‖L2(0,T ;H1(I))+‖v‖L2(0,T ;H1(I))

)
,

where p(·) is some continuous increasing function.
Multifly the first equation of (1.1) by y and integrate the product in I. Then,

we have

1

2

d

dt

∫
Ω

y2dx+ a1

∫
I

∣∣∣∂y
∂x

∣∣∣2dx+
a1

2

∫
I

|y|2dx

=
a1

2

∫
I

|y|2dx+

∫
I

y
∂y

∂x

( ∂
∂x
χ1(ρ)− ∂

∂x
χ2(w)

)
dx

≤ a1

2

∫
I

|y|2dx+
a1

2

∫
I

∣∣∣∂y
∂x

∣∣∣2dx+ C

∫
I

y2
( ∂
∂x
χ1(ρ)− ∂

∂x
χ2(w)

)2

dx

≤ a1

2

∫
I

|y|2dx+
a1

2

∫
I

∣∣∣∂y
∂x

∣∣∣2dx+ C

∫
I

y2
(
χ′1(ρ)

∂ρ

∂x
− χ′2(w)

∂w

∂x

)2

dx.

Here, it follows from (1.2), (3.1) and (3.2) that∫
I

y2
(
χ′1(ρ)

∂ρ

∂x
− χ′2(w)

∂w

∂x

)2

dx

≤ ‖y‖2L4(I)

(
‖χ′1(ρ)‖2L∞(I)

∥∥∥∂ρ
∂x

∥∥∥2

L4(I)
+ ‖χ′2(w)‖2L∞(I)

∥∥∥∂w
∂x

∥∥∥2

L4(I)

)
≤ C‖y‖H1(I)‖y‖L1(I)

(∥∥∥∂ρ
∂x

∥∥∥ 1
2

H1(I)

∥∥∥∂ρ
∂x

∥∥∥ 3
2

L2(I)
+
∥∥∥∂w
∂x

∥∥∥ 1
2

H1(I)

∥∥∥∂w
∂x

∥∥∥ 3
2

L2(I)

)
≤ ε(‖y‖2H1(I) + ‖ρ‖2H2(I) + ‖w‖2H2(I)) + Cεp1(Y0, U).

Therefore, it follows that

d

dt

∫
I

y2dx+ k3

∫
I

∣∣∣∂y
∂x

∣∣∣2dx+ k3

∫
I

|y|2dx

≤ a1

2

∫
I

|y|2dx+ ε(‖y‖2H1(I) + ‖ρ‖2H2(I) + ‖w‖2H2(I)) + Cεp1(Y0, U), (3.5)

where k3 = min{k1, k2, a1}. By summing up (3.3), (3.4) anf (3.5), we obtain

d

dt
ψ(t) + k3ψ(t) + k3

[ ∫
I

∣∣∣∂y
∂x

∣∣∣2dx+

∫
I

∣∣∣∂2ρ

∂x2

∣∣∣2dx+

∫
I

∣∣∣∂2w

∂x2

∣∣∣2dx]
≤ C(‖y‖2L2(I)+‖u‖

2
H1(I)+‖v‖

2
H1(I))+ε(‖y‖

2
H1(I)+‖ρ‖

2
H2(I)+‖w‖

2
H2(I))+Cεp1(Y0, U),

where ψ(t) = ‖y‖2L2(I) + ‖ρ‖2H1(I) + ‖w‖2H1(I).
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If we use the estimate∫
I

|y|2dx ≤ ε‖y‖2H1(I) + Cε‖y‖2L1(I)

and take ε = k3
4 , then we have

d

dt
ψ(t) +

k3

2
ψ(t) +

k3

2

[ ∫
I

∣∣∣∂y
∂x

∣∣∣2dx+

∫
I

∣∣∣∂2ρ

∂x2

∣∣∣2dx+

∫
I

∣∣∣∂2w

∂x2

∣∣∣2dx]
≤ C(‖y0‖2L1(I) + ‖u‖2H1(I) + ‖v‖2H1(I)) + Cεp1(Y0, U). (3.6)

Therefore, we obtain

‖y(t)‖2L2(I)

≤C
[
e−

k3
2 t(‖y0‖2L2(I) + ‖ρ0‖2H1(I) + ‖w0‖2H1(I))

]
(3.7)

+ C
[
‖y0‖2L1(I) + ‖u‖2L2(0,T ;H1(I)) + ‖v‖2L2(0,T ;H1(I)) + p1(Y0, U)

]
, 0 ≤ t ≤ S.

Moreover, we obtain from (3.6) that∫ t

0

(
‖y(s)‖2H1(I) + ‖ρ(s)‖2H2(I) + ‖w(s)‖2H2(I)

)
ds

≤ C
(
‖y0‖2L2(I) + ‖ρ0‖2H1(I) + ‖w0‖2H1(I)

)
(3.8)

+ C
[
‖y0‖2L1(I) + ‖u‖2L2(0,T ;H1(I)) + ‖v‖2L2(0,T ;H1(I)) + tp1(Y0, U)

]
, 0 ≤ t ≤ S.

Hence, for any t1 ∈ (0, S) with Y (t1) ∈ H. we see from (3.1), (3.2), (3.7) and
(3.8) that ‖y‖L2(t1,S;H1(I))∩L∞(t1,S;L2(I)), ‖ρ‖L2(t1,S;H2(I))∩L∞(t1,S;H1(I)) and
‖w‖L2(t1,S;H2(I))∩L∞(t1,S;H1(I)) do not depend on S. As a consequence,
‖y‖H1(t1,S;(H1(I))′), ‖ρ‖H1(t1,S;L2(I)), ‖w‖H1(t1,S;L2(I)), and ‖y‖C([t1,S];L2(I)),
‖ρ‖C([t1,S];H1(I)), ‖w‖C([t1,S];H1(I)) do not depend on S. This shows that y, ρ, w
can be extended as a weak solution beyond the S. By the standard argument
on the extension of the weak solutions, we can then prove the desired result. �

4. Existence of optimal control

In this section, we consider the following optimal control problem

(P) minimize J(U)

with J(U) of the form

J(U) =

∫ T

0

‖DY (U)− Yd‖2Vdt+ γ

∫ T

0

‖U‖2Hdt.
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Here, Y (U) is the weak solution of (1.1). D ∈ L(V) is given by DY =

y0
0

.

Yd =

yd0
0

 ∈ L2(0, T ;V) is the fixed element. γ is a positive constant. Uad =

{U ∈ L2(0, T ;H); ‖U‖L2(0,T ;H) ≤ C}.

Theorem 4.1. There exists an optimal control Ũ ∈ Uad for (P) such that

J(Ũ) = min
U∈Uad

J(U).

Proof. Let {Un} ⊂ Uad be a minimizing sequence such that

lim
n→∞

J(Un) = min
U∈Uad

J(U).

Since {Un} is bounded in L2(0, T ;H), we infer that Un → Ũ weakly in L2(0, T ;H).
For simplicity, we will write Yn instead of the solution Y (Un) of (1.1) with re-
spect to Un. Using the similar estimates of Yn as in the proof of Theorem 3.1,
we see that

Yn → Ỹ weakly in L2(0, T ;V),

dYn
dt
→ dỸ

dt
weakly in H1(0, T ;V ′).

Since V is compactly embedded in H, we can obtain that

Yn → Ỹ strongly in L2(0, T ;H). (4.1)

Now, we will show that Ỹ is a solution to (1.1) with respect to Ũ . Indeed, by
a direct calculation, we have∫ T

0

∥∥∥ ∂
∂x

[
yn

∂

∂x
χ1(ρn)− ỹ ∂

∂x
χ1(ρ̃)

]∥∥∥
(H1(1))′

dt

≤C
[ ∫ T

0

‖yn − ỹ‖L2(I)‖χi(ρn)‖H2(I)dt+ C

∫ T

0

‖ỹ‖H1(I)‖χi(ρn)− χi(ρ̃)‖H1(I)dt
]

≤C
[ ∫ T

0

‖yn − ỹ‖L2(I)p(‖ρn‖H1(I))(‖ρn‖H2(I) + 1)dt

+

∫ T

0

‖ỹ‖H1(I)p(‖ρn‖H1(I) + ‖ρ̃‖H1(I))‖ρn − ρ̃‖H1(I)dt
]

≤C
[
‖yn − ỹ‖L2(0,T ;L2(I))p(‖ρn‖H1(I))(‖ρn‖L2(0,T ;H2(I)) + 1)

+ ‖ỹ‖L2(0,T ;H1(I))p(‖ρn‖H1(I) + ‖ρ̃‖H1(I))‖ρn − ρ̃‖L2(0,T ;H1(I))

]
.

For ψ1 ∈ C([0, T ];H1(I)), it follows from (4.1) that∫ T

0

〈 ∂

∂x

[
yn

∂

∂x
χ1(ρn)− ỹ ∂

∂x
χ1(ρ̃)

]
, ψ1

〉
(H1(I))′,H1(I)

dt→ 0
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as n→∞. By using similar estimate we have∫ T

0

〈 ∂

∂x

[
yn

∂

∂x
χ2(wn)− ỹ ∂

∂x
χ2(w̃)

]
, ψ1

〉
(H1(I))′,H1(I)

dt→ 0

as n→∞. Furthermore, for ψ2 ∈ C([0, T ];H2(I)) it follows from (4.1) that∫ T

0

< T (x)(yn − ỹ), ψ2 >L2(I),H2(I) dt ≤ C‖yn − ỹ‖L2(0,T ;L2(I)) → 0

as n → ∞. Therefore, by the uniqueness, Ỹ is a weak solution to (1.1) with

respect to Ũ(i.e., Ỹ = Y (Ũ)). Since Yn − Yd is weakly convergent to Ỹ − Yd in
L2(0, T ;V), we have

min
U∈Uad

J(U) ≤ J(Ũ) ≤ lim inf
n→∞

J(Un) = min
U∈Uad

J(U).

Hence, J(Ũ) = min
U∈Uad

J(U). �
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