• Title/Summary/Keyword: Control Energy

Search Result 9,870, Processing Time 0.035 seconds

Red Pepper (Capsicum annum) Drying Using Flat-Plate Solar Collectors (평판집열기(平板集熱機)를 이용(利用)한 고추 건조(乾燥)에 관(關)한 연구(硏究))

  • Kim, Dong-Man;Kim, Man-Soo;Chang, Kyu-Seob
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.1
    • /
    • pp.56-64
    • /
    • 1979
  • Two types of fiat-plate collector were designed and constructed for utilizing the solar energy as heating source of red pepper drying. It was performed to investigate the basic factors on using the collectors and the drying effect on various types of red pepper, and the results obtained are summarized as follows. 1. The optimum tilted angles of the collector in Daejeon area were ${\phi}-15^{\circ}$ in summer season and ${\phi}+15^{\circ}$ in winter season when it was adjusted two times per a year: 2. In the conditions during experiment period, average atmospheric temperature and relative humidity were $25.6^{\circ}C$ and 52.6%, respectively, and $42.0^{\circ}C$, 74.2% in the control chamber. The temperature in the drying chamber connected to the water heater was the highest but relative humidity in the chamber connected to the air heater was the lowest among the chambers. 3. The drying velocity of whole red pepper in the chamber connected to the water heater was the fastest as 2.3 times as compared to the whole type on the mat drying followed by air heater and control in decreasing order. The horizontally cut red pepper in the chamber connected to the water heater was dried exceedingly fast among twelve plots. 4. The content of capsaicine as pungent principle and of capsanthine as red pigment in the red pepper were reduced during drying but there were no differences significantly on the drying method, and it could not affect much on the quality of dried product.

  • PDF

Experimental Study on the Infiltration Loss in Plastic Greenhouses Equipped with Thermal Curtains (보온커튼을 설치한 플라스틱 온실의 틈새환기전열량 실측조사)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.100-105
    • /
    • 2015
  • The calculation method of infiltration loss in greenhouse has different ideas in each design standard, so there is a big difference in each method according to the size of greenhouses, it is necessary to establish a more accurate method that can be applied to the domestic. In order to provide basic data for the formulation of the calculation method of greenhouse heating load, we measured the infiltration rates using the tracer gas method in plastic greenhouses equipped with various thermal curtains. And then the calculation methods of infiltration loss in greenhouses were reviewed. Infiltration rates of the multi-span and single-span greenhouses were measured in the range of $0.042{\sim}0.245h^{-1}$ and $0.056{\sim}0.336h^{-1}$ respectively, single-span greenhouses appeared to be slightly larger. Infiltration rate of the greenhouse has been shown to significantly decrease depending on the number of thermal curtain layers without separation of single-span and multi-span. As the temperature differences between indoor and outdoor increase, the infiltration rates tended to increase. In the range of low wind speed during the experiments, changes of infiltration rate according to the outdoor wind speed could not find a consistent trend. Infiltration rates for the greenhouse heating design need to present the values at the appropriate temperature difference between indoor and outdoor. The change in the infiltration rate according to the wind speed does not need to be considered because the maximum heating load is calculated at a low wind speed range. However the correction factors to increase slightly the maximum heating load including the overall heat transfer coefficient should be applied at the strong wind regions. After reviewing the calculation method of infiltration loss, a method of using the infiltration heat transfer coefficient and the greenhouse covering area was found to have a problem, a method of using the infiltration rate and the greenhouse volume was determined to be reasonable.

Strategies about Optimal Measurement Matrix of Environment Factors Inside Plastic Greenhouse (플라스틱온실 내부 환경 인자 다중센서 설치 위치 최적화 전략)

  • Lee, JungKyu;Kang, DongHyun;Oh, SangHoon;Lee, DongHoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • There is systematic spatial variations in environmental properties due to sensitive reaction to external conditions at plastic greenhouse occupied 99.2% of domestic agricultural facilities. In order to construct 3 dimensional distribution of temperature, relative humidity, CO2 and illuminance, measurement matrix as 3 by 3 by 5 in direction of width, height and length, respectively, dividing indoor space of greenhouse was designed and tested at experimental site. Linear regression analysis was conducted to evaluate optimal estimation method in terms with horizontal and vertical variations. Even though sole measurement point for temperature and relative humidity could be feasible to assess indoor condition, multiple measurement matrix is inevitably required to improve spatial precision at certain time domain such as period of sunrise and sunset. In case with CO2, multiple measurement matrix could not successfully improve the spatial predictability during a whole experimental period. In case with illuminance, prediction performance was getting smaller after a time period of sunrise due to systematic interference such as indoor structure. Thus, multiple sensing methodology was proposed in direction of length at higher height than growing bed, which could compensate estimation error in spatial domain. Appropriate measurement matrix could be constructed considering the transition of stability in indoor environmental properties due to external variations. As a result, optimal measurement matrix should be carefully designed considering flexibility of construction relevant with the type of property, indoor structure, the purpose of crop and the period of growth. For an instance, partial cooling and heating system to save a consumption of energy supplement could be successfully accomplished by the deployment of multiple measurement matrix.

Changes in Growth and Physiological Characteristics of Tetradium daniellii (Benn.) T. G. Hartley Container Seedlings by Shading Treatment (차광처리에 따른 쉬나무 용기묘의 생장 및 생리적 특성 변화)

  • Choi, Kyu Seong;Sung, Hwan In;Kim, Jong Jin;Song, Ki Seon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.130-140
    • /
    • 2020
  • This study was conducted in order to closely examine about optimum shading for superior seedling production a container seedling of Tetradium daniellii, which is being increased the demand for a seedling due to being used for alternative energy, ecological restoration and honey plant. The experiment of investigating the optimum shading on T. daniellii was carried out by using plastic container types (350 ml/cavity) for the forestry facility cultivation. The shading level was treated with full sunlight and with 35%, 55%, 75% of the full sunlight. As a result of having surveyed height and root collar diameter growth of a containerized seedling in T. daniellii, a case of the shading experiment showed a noticeably high value was indicated in the full sunlight. It was surveyed that the stronger shading level leads to the lower growth value. Root development was most active in full sunlight. Dry matter production, it was investigated to be the highest in full sunlight. It was surveyed to be the similar tendency to the outcome of height and root collar diameter growth. QI, which is index of showing the quality of a seedling, stood at 0.98 in full sunlight, thereby having been investigated to be the highest. As for the chlorophyll content in a seedling, the highest chlorophyll content was indicated in the 75% shading treatment with the relatively highest shading level. The photosynthetic rate and the water use efficiency were surveyed to be the highest in full sunlight with 8.48 μmolCO2·m-2s-1, 1.40 μmolCO2·mmolm-1H2O, respectively. As a result of surveying the whole experiment, optimum shading level for superior seedling production a container seedling of T. daniellii is determined in full sunlight (0%). It is expected that this will be used as a basic data for mass production.

Experimental and clinical studies with impedance audiometry; the increase in air volume in the middle ear air system and the pneumatization of human temporal bones (측두골의 함기도와 중이강의 용적이 고막 임피던스에 미치는 영향에 관한 연구)

  • 민양기
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1977.06a
    • /
    • pp.4.4-5
    • /
    • 1977
  • The vibratory energy introduced into the external ear canal is changed by the mechanical factors of eardrum itself, the motility of ossicles, and the air cushion of tympanic cavity and the like. This study was designed to investigate the volume of middle ear cavity and mastoid air cell system as a factor of determining the accoustic impedance of middle ear system. The author studied how the increase in air volume of middle ear cavity effects on the acoustic impedance of middle ear system with dogs' ears and researched the correlation between the degree of pneumatization of temporal bones and the acoustic impedance of middle ear system by comparing the radiological findings of pneumatization (Law's and Towne's projection) with the acoustic impedance measurements with Madsen ZO 70. The result is as follows: 1 The tympanometric findings in control state revealed the curves of type A, and did not change in its configuration by the increase in the air volume of dogs middle ear system. 2. The static compliance of middle ear revealed a distinct and linear increase in proportion to the increase in air volume of middle ear system; the rate of increase was $0.05{\pm}0.02$ cc of static compliance per cc of air volume. 3. Authenticated in the above result and the tendency to increase in static compliance in proportion to the increase in the degree of pneumatization of temporal bones, there was significant regression equation between the degree of pneumatization of temporal bones (x variable) and the static compliance of middle ear system; $y=0.19x{\pm}0.16{\pm}0.05$ It is suggested that the difference in volume of middle ear system plays an important role in the change of the static compliance of middle ear, and the author concludes that the measurement of static compliance of middle ear has clinical value as diagnostic means of evaluating the degree of pneumatization of temporal bones along with some radiological examination.

  • PDF

THE COMPARISON OF DIFFERENT CANAL IRRIGATION METHODS TO PREVENT REACTION PRECIPITATE BETWEEN SODIUM HYPOCHLORITE AND CHLORHEXIDINE (차아염소산나트륨과 클로르헥시딘의 반응침전물 형성방지를 위한 여러 가지 근관세척 방법의 비교)

  • Choi, Moon-Sun;Park, Se-Hee;Cho, Kyung-Mo;Kim, Jin-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.80-87
    • /
    • 2010
  • The purpose of this study was to compare the different canal irrigation methods to prevent the formation of precipitate between sodium hypochlorite (NaOCl) and chlorhexidine (CHX). Extracted 50 human single-rooted teeth were used. The root canals were instrumented using NiTi rotary file (Profile .04/#40) with 2.5% NaOCl and 17% EDTA as irrigants. Teeth were randomly divided into four experimental groups and one control group as follows; Control group: 2.5% NaOCl only, Group 1: 2.5% NaOCl + 2% CHX, Group 2: 2.5% NaOCl + paper points + 2% CHX, Group 3: 2.5% NaOCl + preparation with one large sized-file + 2% CHX, Group 4: 2.5% NaOCl +95% alcohol+ 2% CHX. The teeth were split in bucco-lingual aspect and the specimens were observed using Field Emission Scanning Electron Microscope. The percentages of remaining debris and patent dentinal tubules were determined. Statistical analysis was performed with one-way analysis of variance (ANOVA). Energy Dispersive x-ray Spectroscopy was used for analyzing the occluded materials in dentinal tubule for elementary analysis. There were no significant differences in percentage of remaining debris and patent tubules between all experimental groups at all levels (p > .05). In elementary analysis, the most occluded materials in dentinal tubule were dentin debris. NaOCl/CHX precipitate was detected in one tooth specimen of Group 1. In conclusion, there were no significant precipitate on root canal, but suspected material was detected on Group 1. The irrigation system used in this study could be prevent the precipitate formation.

Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining - (미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 -)

  • Seok, Youngsun;Song, Kihwan;Han, Hyojoo;Lee, Junga
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.79-96
    • /
    • 2021
  • Green infrastructure planning represents landscape planning measures to reduce particulate matter. This study aimed to derive factors that may be used in planning green infrastructure for particulate matter reduction using text mining techniques. A range of analyses were carried out by focusing on keywords such as 'particulate matter reduction plan' and 'green infrastructure planning elements'. The analyses included Term Frequency-Inverse Document Frequency (TF-IDF) analysis, centrality analysis, related word analysis, and topic modeling analysis. These analyses were carried out via text mining by collecting information on previous related research, policy reports, and laws. Initially, TF-IDF analysis results were used to classify major keywords relating to particulate matter and green infrastructure into three groups: (1) environmental issues (e.g., particulate matter, environment, carbon, and atmosphere), target spaces (e.g., urban, park, and local green space), and application methods (e.g., analysis, planning, evaluation, development, ecological aspect, policy management, technology, and resilience). Second, the centrality analysis results were found to be similar to those of TF-IDF; it was confirmed that the central connectors to the major keywords were 'Green New Deal' and 'Vacant land'. The results from the analysis of related words verified that planning green infrastructure for particulate matter reduction required planning forests and ventilation corridors. Additionally, moisture must be considered for microclimate control. It was also confirmed that utilizing vacant space, establishing mixed forests, introducing particulate matter reduction technology, and understanding the system may be important for the effective planning of green infrastructure. Topic analysis was used to classify the planning elements of green infrastructure based on ecological, technological, and social functions. The planning elements of ecological function were classified into morphological (e.g., urban forest, green space, wall greening) and functional aspects (e.g., climate control, carbon storage and absorption, provision of habitats, and biodiversity for wildlife). The planning elements of technical function were classified into various themes, including the disaster prevention functions of green infrastructure, buffer effects, stormwater management, water purification, and energy reduction. The planning elements of the social function were classified into themes such as community function, improving the health of users, and scenery improvement. These results suggest that green infrastructure planning for particulate matter reduction requires approaches related to key concepts, such as resilience and sustainability. In particular, there is a need to apply green infrastructure planning elements in order to reduce exposure to particulate matter.

Analysis of Heat Transfer Characteristics on Multi-layer Insulating Curtains Coated with Silica Aerogel (실리카 에어로겔이 흡착된 다겹보온커튼의 전열 특성 분석)

  • Jin, Byung-Ok;Kim, Hyung-Kweon;Ryou, Young-Sun;Lee, Tae-Seok;Kim, Young-Hwa;Oh, Sung-Sik;Kang, Geum-Choon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2019
  • The multi-layer insulating curtains used in the experiment was produced in six combinations using non-woven fabric containing aerogel and compared and analyzed by measuring heat flux and heat perfusion rates due to weight, thickness and temperature changes. Using silica aerogel, which have recently been noted as new material insulation, this study tries to produce a new combination of multi-layer insulating curtains that can complement the shortcomings of the multi-layer insulating curtains currently in use and maintain and improve its warmth, and analyze the thermal properties. The heat flux means the amount of heat passing per unit time per unit area, and the higher the value, the more heat passing through the multi-layer insulating curtain, and it can be judged that the heat retention is low. The weight and thickness of multi-layer insulation curtains were found to be highly correlated with thermal insulation. In particular, insulation curtains combined with aerogel meltblown non-woven fabric had relatively higher thermal insulation than insulation curtains with the same number of insulation materials. However, the aerogel meltblown non-woven fabric is weak in light resistance and durability, and there is a problem that the production process and aerogel are scattering. In order to solve this problems, the combination of expanded aerogel non-woven fabric and hollow fiber non-woven fabric, which are relatively simple manufacturing processes and excellent warmth, are suitable for use in real farms.

Analysis of Spatial and Vertical Variability of Environmental Parameters in a Greenhouse and Comparison of Carbon Dioxide Concentration in Two Different Types of Greenhouses (온실 환경요인의 공간적 및 수직적 특성 분석과 온실 종류에 따른 이산화탄소 농도 비교)

  • Jeong, Young Ae;Jang, Dong Cheol;Kwon, Jin Kyung;Kim, Dae Hyun;Choi, Eun Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • This study was aimed to investigate spatial and vertical characteristics of greenhouse environments according to the location of the environmental sensors, and to investigate the correlations between temperature, light intensity, and carbon dioxide (CO2) concentration according to the type of greenhouse. Temperature, relative humidity (RH), CO2, and light sensors were installed in the four-different vertical positions of the whole canopy as well as ground and roof space at the five spatial locations of the Venlo greenhouse. Also, correlations between temperature, light intensity, and CO2 concentration in Venlo and semi-closed greenhouses were analyzed using the Curve Expert Professional program. The deviations among the spatial locations were larger in the CO2 concentration than other environmental factors in the Venlo greenhouse. The average CO2 concentration ranged from 465 to 761 µmol·mol-1 with the highest value (646 µmol·mol-1) at the Middle End (4ME) close to the main pipe (50Ø) of the liquefied CO2 gas supply and lowest (436 µmol·mol-1) at the Left Middle (5LM). The deviation among the vertical positions was greater in temperature and relative humidity than other environments. The time zone with the largest deviation in average temperature was 2 p.m. with the highest temperature (26.51℃) at the Upper Air (UA) and the lowest temperature (25.62℃) at the Lower Canopy (LC). The time zone with the largest deviation in average RH was 1 p.m. with the highest RH (76.90%) at the LC and the lowest RH (71.74%) at the UA. The highest average CO2 concentration at each hour was Roof Air (RF) and Ground (GD). The coefficient of correlations between temperature, light intensity, and CO2 concentration were 0.07 for semi-closed greenhouse and 0.66 for Venlo greenhouse. All the results indicate that while the CO2 concentration in the greenhouse needs to be analyzed in the spatial locations, temperature and humidity needs to be analyzed in the vertical positions of canopy. The target CO2 fertilization concentration for the semi-closed greenhouse with low ventilation rate should be different from that of general greenhouses.

Application and effectiveness of a nutrition education program based on the 2020 Dietary Reference Intakes for Koreans for undergraduates in Gyeongsangnam-do and Gyeonggi-do (2020 한국인 영양소 섭취기준 활용 자료를 이용한 영양교육 프로그램의 적용 및 효과: 경상남도 및 경기도 지역 대학생을 대상으로)

  • Mijoo Choi;Hyein Jung;Nayoung Kim;Sangah Shin;Taejung Woo;Eunju Park
    • Journal of Nutrition and Health
    • /
    • v.56 no.6
    • /
    • pp.730-741
    • /
    • 2023
  • Purpose: The 2020 Dietary Reference Intakes for Koreans (KDRIs) serves as a foundation for daily nutrient and energy recommendations aiming to enhance public health and prevent chronic diseases. They act as guidelines for maintaining proper nutrition and overall health. Using KDRIs is crucial for promoting healthier lifestyles and making informed dietary choices. Thus, this study explores the influence of a nutrition education program, based on the 2020 KDRIs, on the nutrition knowledge and dietary habits of undergraduates in Gyeongsangnam-do and Gyeonggi-do. Methods: The nutrition education program, designed with diverse instructional materials, was executed across a wide range of universities. The education group (n = 75) engaged in the program for a 6-week instructional period, while the control group (n = 53) underwent the survey without participating in the education program. Nutrition Quotient (NQ) and knowledge assessments were administered to both groups immediately before and after the instructional period. Results: Within the education group, the nutrition education program positively impacted responses to NQ practice items, including knowledge of nutrition, daily intake, and portion sizes (p < 0.05). In contrast, there were no significant differences between the before and after responses of the control group for most survey items. Post-program evaluations showed significantly higher self-assessment scores and increased satisfaction levels (p < 0.05), with the satisfaction rate for the education program using the 2020 KDRIs reaching 99.2%. Conclusion: This study has demonstrated the positive impact of an effective nutrition education program. However, there is a need for the continuous development and implementation of nutrition education programs to sustain these outcomes and further enhance the nutritional education experience.