DOI QR코드

DOI QR Code

Experimental Study on the Infiltration Loss in Plastic Greenhouses Equipped with Thermal Curtains

보온커튼을 설치한 플라스틱 온실의 틈새환기전열량 실측조사

  • Nam, Sang-Woon (Department of Agricultural and Rural Engineering, Chungnam National University) ;
  • Shin, Hyun-Ho (Department of Agricultural and Rural Engineering, Chungnam National University)
  • 남상운 (충남대학교 지역환경토목학과) ;
  • 신현호 (충남대학교 지역환경토목학과)
  • Received : 2015.04.16
  • Accepted : 2015.05.20
  • Published : 2015.06.30

Abstract

The calculation method of infiltration loss in greenhouse has different ideas in each design standard, so there is a big difference in each method according to the size of greenhouses, it is necessary to establish a more accurate method that can be applied to the domestic. In order to provide basic data for the formulation of the calculation method of greenhouse heating load, we measured the infiltration rates using the tracer gas method in plastic greenhouses equipped with various thermal curtains. And then the calculation methods of infiltration loss in greenhouses were reviewed. Infiltration rates of the multi-span and single-span greenhouses were measured in the range of $0.042{\sim}0.245h^{-1}$ and $0.056{\sim}0.336h^{-1}$ respectively, single-span greenhouses appeared to be slightly larger. Infiltration rate of the greenhouse has been shown to significantly decrease depending on the number of thermal curtain layers without separation of single-span and multi-span. As the temperature differences between indoor and outdoor increase, the infiltration rates tended to increase. In the range of low wind speed during the experiments, changes of infiltration rate according to the outdoor wind speed could not find a consistent trend. Infiltration rates for the greenhouse heating design need to present the values at the appropriate temperature difference between indoor and outdoor. The change in the infiltration rate according to the wind speed does not need to be considered because the maximum heating load is calculated at a low wind speed range. However the correction factors to increase slightly the maximum heating load including the overall heat transfer coefficient should be applied at the strong wind regions. After reviewing the calculation method of infiltration loss, a method of using the infiltration heat transfer coefficient and the greenhouse covering area was found to have a problem, a method of using the infiltration rate and the greenhouse volume was determined to be reasonable.

온실의 난방부하 중 틈새환기전열부하 산정방법은 설계 기준마다 제각각이고, 온실의 규모에 따라 각각의 방법에는 큰 차이가 있으므로 보다 정확히 국내에 적용할 수 있는 방법을 정립할 필요가 있다. 본 연구에서는 원예시설의 환경설계 중 난방부하 산정방법 정립에 필요한 기초자료를 제공할 목적으로 다양한 종류의 보온커튼을 설치한 단동 및 연동 플라스틱 온실에서 추적가스법을 이용하여 틈새환기율을 실측하였으며, 온실의 틈새환기 전열부하 산정방법을 검토하였다. 연동온실의 틈새환기율은 $0.042{\sim}0.245h^{-1}$의 범위로 측정되었으며 단동온실의 틈새환기율은 $0.056{\sim}0.336h^{-1}$의 범위로 측정되어 단동온실이 약간 큰 것으로 나타났다. 온실의 틈새환기율은 단동, 연동 구분없이 보온커튼의 층수에 따라 크게 감소하는 것으로 나타났다. 또한 틈새환기율은 온실의 실내외 기온차가 커질수록 증가하는 경향을 보였으나, 실험기간 동안의 낮은 풍속 범위에서 외부 풍속에 따른 틈새환기율의 변화는 일정한 경향을 찾을 수 없었다. 온실의 난방설계를 위한 틈새환기율은 적정 실내외 기온차에서의 값을 제시할 필요가 있고, 최대난방부하 산정의 기준이 되는 낮은 풍속 범위에서 풍속에 따른 틈새환기율의 변화는 고려하지 않아도 되는 것으로 고찰되었다. 다만 강풍지역에서는 열관류율을 포함하여 최대난방부하를 약간 증가시키는 보정계수의 적용이 필요할 것으로 판단되었다. 온실의 틈새환기전열부하 산정방법을 검토한 결과 틈새환기전열계수와 온실의 피복면적을 이용하는 방법은 문제가 있는 것으로 나타났으며, 틈새환기율과 온실의 체적을 이용하는 방법이 합리적인 것으로 판단되었다.

Keywords

References

  1. American Society of Agricultural and Biological Engineers (ASABE). 2008. Standard: Heating, ventilating and cooling greenhouses. ANSI/ASAE EP406.4. ASABE, Michigan, USA.
  2. Baptista, F.J., B.J. Bailey, J.M. Randall, and J.F. Meneses. 1999. Greenhouse ventilation rate: Theory and measurement with tracer gas techniques. J. Agric. Engng Res. 72(4):363-374. https://doi.org/10.1006/jaer.1998.0381
  3. Ham, J.S. 1993. An evaluation on the accuracy of tracer-gas method in ventilation rate measurement. Journal of the Architectural Institute of Korea. 9(12):71-79 (in Korean).
  4. Japan Greenhouse Horticulture Association (JGHA). 2007. Handbook of protected horticulture 5th edition. JGHA, Tokyo, Japan (in Japanese).
  5. Kim, M.K., S.G. Lee, W.M. Seo, and J.E. Son. 1997. Design standards for greenhouse environment. Rural Development Corporation, Ansan, Korea (in Korean).
  6. Kozai, T., T. Gunji, and I. Watanabe. 1982. Measurements and analyses of the daily heating load of a greenhouse. Journal of Agricultural Meteorology. 38(3):279-285 (in Japanese) . https://doi.org/10.2480/agrmet.38.279
  7. Lee, H.W., S. Diop, and Y.S. Kim. 2011. Variation of the overall heat transfer coefficient of plastic greenhouse covering material. J. of Bio-Env Control. 20(2):72-77 (in Korean).
  8. Lindley, J.A. and J.H. Whitaker. 1996. Agricultural buildings and structures. ASAE, Michigan, USA.
  9. Mihara, Y., M. Okada, and T. Takakura. 1980. Fundamentals and practices in greenhouse design. Yokendo Co. Ltd. Tokyo, Japan (in Japanese)
  10. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2014. Current status of greenhouses and products for vegetables in 2013. MAFRA, Sejong, Korea (in Korean).
  11. Nam, S.W. 2013. Current status of greenhouse environmental design technique and comparison of standard weather data. Magazine of the Korean Society of Agricultural Engineers. 55(4):28-36 (in Korean).
  12. Nam, S.W., H.H. Shin, and D.U. Seo. 2014. Comparative analysis of weather data for heating and cooling load calculation in greenhouse environmental design. Protected Horticulture and Plant Factory. 23(3):174-180 (in Korean). https://doi.org/10.12791/KSBEC.2014.23.3.174
  13. Nederhoff, E.M., J. Van De Vooren, and A.J. Udink Ten Cate. 1985. A practical tracer gas method to determine ventilation in greenhouses. J. Agric. Engng Res. 31(4):309-319. https://doi.org/10.1016/0021-8634(85)90107-6
  14. National Greenhouse Manufacturers Association (NGMA). 1983. Heat-loss standard. NGMA. Littleton, USA.
  15. Shin, H.H. 2015. Effect of ground heat exchange and infiltration loss on the greenhouse heating load. Master's Thesis. Chungnam National University (in Korean).
  16. Watanabe, I. 1986. Experimental methods for agricultural environment. Science House, Tokyo, Japan (in Japanese).