• 제목/요약/키워드: Control

검색결과 154,354건 처리시간 0.1초

모델 추종 제어를 위한 PID 제어기법 (PID Control Structure for Model Following Control)

  • 이창호;김종진;하홍곤
    • 융합신호처리학회논문지
    • /
    • 제5권2호
    • /
    • pp.138-142
    • /
    • 2004
  • 본 논문은 모델추종 제어을 위한 PID제어기법을 제안한다. 이산시간영역에서 제어성능을 개선하기 위해 제안하였고, PID 제어계에 새로운 전치 보상기를 삽입하여 모델추종제어계가 되도록 하였다. 외란이나 부하변동에 의해서 계의 응답이 변할 때 PID 제어기의 이득을 재조정할 필요가 있다. PID 제어계에서 각 PID 이득이 제어계의 성능을 크게 좌우하게 되므로 신경망을 PID제어기에 결합하여 제어계의 성능을 향상시켰고 제안한 제어계에서 PID제어기의 이득은 역전파 알고리즘에 의해 자동적으로 조정되어지도록 하였다. 모델추종 제어계의 제어성능을 확인하기 위하여 제어대상을 직류 서보 전동기의 각 위치로 하였다. 이것을 위치 제어계에 적용하여 실험을 통해 그 성능을 증명하였다.

  • PDF

수산관련법상(水產關聯法上) 어업관리제도(漁業管理制度)에 관한 연구(硏究) (A Study on the Fisheries Control System of the Fisheries Act of Korea)

  • 이종근
    • 수산해양교육연구
    • /
    • 제11권1호
    • /
    • pp.1-23
    • /
    • 1999
  • The fisheries control system being now enforced in all countries may be generally classified as three types - the input control system, the output control system, and the technical control system. In Asian countries that have relatively small fishery scales, diverse object species and the fisheries resources has been regarded as "governmental possessions", fisheries have been controled subsidiarily using the technical control system based on the input control system traditionally. While in Europe and America that have relatively large fisheries scales, simple object species and the fisheries resources has been regarded as "common property", fisheries have been controled subsidiarily using the input control system and the technical control system based on the output control system. In Korea, fisheries have been controled subsidiarily using the technical control system based on the input control system traditionally, nevertheless overexplotation and overcapitalization have not been solved. Recently the EEZ was promulgated, the total allowable catch system was introduced to control the EEZ. But the output control system is totally different from the input control system of the Korea traditional fisheries system, simultaneous availableness of both system is considerably difficulty. Therefore a study on new systems to make both systems harmonized has to be performed. The thesis is aimed at presenting the general improvement direction of the Korea fisheries control system as the basis for establishment of the new fisheries control system.

  • PDF

Studies on control mechanism and performance of a novel pneumatic-driven active dynamic vibration absorber

  • Kunjie Rong;Xinghua Li;Zheng Lu;Siyuan Wu
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.117-127
    • /
    • 2023
  • To efficiently attenuate seismic responses of a structure, a novel pneumatic-driven active dynamic vibration absorber (PD-ADVA) is proposed in this study. PD-ADVA aims to realize closed-loop control using a simple and intuitive control algorithm, which takes the structure velocity response as the input signal and then outputs an inverse control force to primary structure. The corresponding active control theory and phase control mechanism of the system are studied by numerical and theoretical methods, the system's control performance and amplitude-frequency characteristics under seismic excitations are explored. The capability of the proposed active control system to cope with frequency-varying random excitation is evaluated by comparing with the optimum tuning TMD. The analysis results show that the control algorithm of PD-ADVA ensures the control force always output to the structure in the opposite direction of the velocity response, indicating that the presented system does not produce a negative effect. The phase difference between the response of uncontrolled and controlled structures is zero, while the phase difference between the control force and the harmonic excitation is π, the theoretical and numerical results demonstrate that PD-ADVA always generates beneficial control effects. The PD-ADVA can effectively mitigate the structural seismic responses, and its control performance is insensitive to amplitude. Compared with the optimum tuning TMD, PD-ADVA has better control performance and higher system stability, and will not have negative effects under seismic wave excitations.

Optimal Vibration Control of Vehicle Engine-Body System using Haar Functions

  • Karimi Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.714-724
    • /
    • 2006
  • In this note a method of designing optimal vibration control based on Haar functions to control of bounce and pitch vibrations in engine-body vibration structure is presented. Utilizing properties of Haar functions, a computational method to find optimal vibration control for the engine-body system is developed. It is shown that the optimal state trajectories and optimal vibration control are calculated approximately by solving only algebraic equations instead of solving the Riccati differential equation. Simulation results are included to demonstrate the validity and applicability of the technique.

비선형 백스테핑 방식에 의한 차량 동력학의 적응-학습제어 (Adaptive-learning control of vehicle dynamics using nonlinear backstepping technique)

  • 이현배;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.636-639
    • /
    • 1997
  • In this paper, a dynamic control scheme is proposed which not only compensates for the lateral dynamics and longitudinal dynamics but also deal with the yaw motion dynamics. Using the dynamic control technique, adaptive and learning algorithm together, the proposed controller is not only robust to disturbance and parameter uncertainties but also can learn the inverse dynamics model in steady state. Based on the proposed dynamic control scheme, a dynamic vehicle simulator is contructed to design and test various control techniques for 4-wheel steering vehicles.

  • PDF

Pole Assignment for Structural Active Control

  • Vongchavalitkul, Sanguan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.5-7
    • /
    • 2004
  • Significant progress has been achieved in the active control of civil-engineering structures, not only in the control algorithm, but also in control testing of the scaled model and full-scale building. At the present time, most algorithms used in the active control of civil engineering structures are based on the various active control techniques. In this paper represents active control method, by using pole assignment for reducing structural vibration under excited load. Numerical simulations are performed to assess the effectiveness of pole assignment control system. The relative displacement of structure system is significantly reduced.

  • PDF

특이성을 가진 비선형 시스템에 대한 퍼지 제어 (Fuzzy Control of Nonlinear Systems with Singularity)

  • 임기성;정정주
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2863-2866
    • /
    • 2003
  • In nonlinear control fields, for irregular nonlinear systems, control form which consists of approximate tracking control law and exact tracking control law and which switches between two laws has been proposed recently. In this thesis, we design new switching control law which connect approximate linearization control law and exact linearization control law by fuzzy rules for irregular nonlinear system, ball and beam system. Fuzzy switching controller designed by fuzzy concept is proved that designed scheme overcomes singularities of irregular system, improves unstability problem of switching procedure, and has more efficient control value through simulation. Stability of fuzzy control system proved by Lyapunov's stability theorems.

  • PDF

능동 현가 장치의 외란 적응 슬라이딩 모드 제어 (Active Suspension using Disturbance Accommodating Sliding Mode Control)

  • 김종래;김진호
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.275-280
    • /
    • 1999
  • This paper presents a disturbance accommodating sliding mode control for a quarter-car active suspension using an electro-hydraulic actuator. The electro-hydraulic actuator model is nonlinear and uncertain. The hardware constrains on the actuator prevent high gain in a sliding mode control, which deteriorates the force tracking performance. DAC(Disturbance Accommodating Control) is combined with the sliding mode control to improve the tracking performance. DAC observer estimates the pressure due to the actuator uncertainty. The additional control is designed to compensate the estimated pressure. Simulation results show the improved tracking performance with the Proposed control methods.

  • PDF

강인제어이론을 이용한 발전기 여자 시스템 (Generator Excitor Control Using Robust Control)

  • 홍현문;정수현
    • 전기학회논문지P
    • /
    • 제53권4호
    • /
    • pp.161-165
    • /
    • 2004
  • This thesis proposes a robust controller introducing the $H_{\infty}$ control theory, one of the robust control theories that can obtain desired control performance while ensuring robustness for the uncertainty and disturbance contained in the power system. This thesis also proposes an improved digital exciter control system for a synchronized generator using a digitally designed controller. Simulation to verify the usefulness of the proposed method was carried. Results show that the proposed control system manifests excellent control performance compared to existing control systems.

전자기 액튜에이터를 이용한 1/4차량 모델의 능동 진동 제어에 관한 연구 (Active Vibration Control of 1/4 Vehicle Model using Electro-magnetic Actuator)

  • 허신;최강윤;김유일
    • 연구논문집
    • /
    • 통권23호
    • /
    • pp.81-92
    • /
    • 1993
  • In this study, quarter vehicle model is used to analyse vibration control effects for ride comfort and handling safety according to this three kinds of control methods, which are the modal control, the sky-hook control and the linear viscous damping control. We performed theoretical analysis and experiments and compared two results. In experiments, electro-magnetic actuator was employed as a force actuator. It is shown that all three methods can effectively control the vehicle model. The modal control method gives similar control results using gain less than the viscous damping control.

  • PDF