• Title/Summary/Keyword: Contrast to Noise Ratio

Search Result 306, Processing Time 0.034 seconds

Prospective Comparison of FOCUS MUSE and Single-Shot Echo-Planar Imaging for Diffusion-Weighted Imaging in Evaluating Thyroid-Associated Ophthalmopathy

  • YunMeng Wang;YuanYuan Cui;JianKun Dai;ShuangShuang Ni;TianRan Zhang;Xin Chen;QinLing Jiang;YuXin Cheng;YiChuan Ma;Tuo Li;Yi Xiao
    • Korean Journal of Radiology
    • /
    • v.25 no.10
    • /
    • pp.913-923
    • /
    • 2024
  • Objective: To prospectively compare single-shot (SS) echo-planar imaging (EPI) and field-of-view optimized and constrained undistorted single-shot multiplexed sensitivity-encoding (FOCUS MUSE) for diffusion-weighted imaging (DWI) in evaluating thyroid-associated ophthalmopathy (TAO). Materials and Methods: SS EPI and FOCUS MUSE DWIs were obtained from 39 patients with TAO (18 male; mean ± standard deviation: 48.3 ± 13.3 years) and 26 healthy controls (9 male; mean ± standard deviation: 43.0 ± 18.5 years). Two radiologists scored the visual image quality using a 4-point Likert scale. The image quality score, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) of extraocular muscles (EOMs) were compared between the two DWIs. Differences in the ADC of EOMs were also evaluated. The performance of discriminating active from inactive TAO was assessed using receiver operating characteristic curves. The correlation between ADC and clinical activity score (CAS) was analyzed using Spearman correlation. Results: Compared with SS EPI DWI, FOCUS MUSE DWI demonstrated significantly higher image quality scores (P < 0.001), a higher SNR and CNR on the lateral rectus muscle (LRM) and medial rectus muscle (MRM) (P < 0.05), and a non-significant difference in the ADC of the LRM and MRM. Active TAO showed higher ADC than inactive TAO and healthy controls with both SS EPI and FOCUS MUSE DWIs (P < 0.001). Inactive TAO and healthy controls did not show a significant ADC difference with both DWIs. Compared with SS EPI DWI, FOCUS MUSE DWI demonstrated better discrimination of active from inactive TAO (AUC: 0.925 vs. 0.779; P = 0.007). The ADC was significantly correlated with CAS in SS EPI DWI (r = 0.391, P < 0.001) and FOCUS MUSE DWI (r = 0.645, P < 0.001). Conclusion: FOCUS MUSE DWI provides better images for evaluating EOMs and better performance in diagnosing active TAO than SS EPI DWI. The application of FOCUS MUSE will facilitate the DWI evaluation of TAO.

Quantitative Evaluation on Optimal Scan Time of PET/CT Studies Using TOF PET (TOF 기법을 이용한 PET/CT 검사에서 적정 스캔 시간에 대한 정량적 평가)

  • Moon, Il-Sang;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.34-37
    • /
    • 2012
  • Purpose: To verify the optimal scan time per bed for clinical application, we evaluated the quality of $^{18}F$-FDG images with varying scan times in a phantom and 20 patients with 38 lesions using a Philips (TOF) PET/CT scanner. Materials and Methods: The PET/CT images of a NEMA IEC body phantom and 20 patients (16 males, 4 females) were acquired for 5 different scan times of 20-100 sec per bed with intervals of 20 sec. The activity ratio of hot spheres (diameter of 17 [H1], 22 [H2] and 28 [H3] mm) to the background region in the IEC body phantom was 8-to-1. The contrast recovery coefficient (CRC) and standard uptake value (SUV) based on ROIs of hot spheres and background region were calculated. The noise in each background region was estimated as the ratio of SD of counts to the mean counts in the background region. On the patient image, the injected dose of $^{18}F$-FDG was $444{\pm}74$ MBq and the SUVs in the 38 hot lesions were measured. Results: The two scan time groups (LT-60 [<60 sec] and GT-60 [${\geq}60$ sec]) were compared. In the phantom study, the coefficient of deviations (CVs, %) of CRC and SUV in LT-60 (H1: 14.2 and 7.3, H2: 11.4 and 7.8, H3: 4.9 and 3.2) were higher than GT-60 (H1: 8.9 and 2.8, H1: 8.2 and 5.0, H3: 2.0 and 1.6). In the patient study, the mean CV of CRC and SUV in LT-60 (4.0) was higher than GT-60 (1.2). Conclusion: This study showed that noise increased as the scan time decreased. High noise for the scan time <60 sec per bed yielded high variation of SUV and CRC. Therefore, considering PET/CT image quality, the scan time per bed in the TOF PET/CT scanner should be at least ${\geq}60$ sec.

  • PDF

Comparison of Collimator Choice on Image Quality of I-131 in SPECT/CT (I-131 SPECT/CT 검사의 에서 조준기 종류에 따른 영상 비교 평가)

  • Kim, Jung Yul;Kim, Joo Yeon;Nam-Koong, Hyuk;Kang, Chun Goo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • Purpose: I-131 scan using High Energy (HE) collimator is generally used. While, Medium Energy (ME) collimator is not suggested to use in result of an excessive septal penetration effects, it is used to improve the sensitivities of count rate on lower dose of I-131. This research aims to evaluate I-131 SPECT/CT image quality using by HE and ME collimator and also find out the possibility of ME collimator clinical application. Materials and Methods: ME and HE collimator are substituted as Siemens symbia T16 SPECT/CT, using I-131 point source and NEMA NU-2 IQ phantom. Single Energy Window (SEW) and Triple Energy Windows (TEW) are applied for image acquisition and images with CTAC and Scatter correction application or not, applied different number of iteration and sub set are reconstructed by IR method, flash 3D. By analysis of acquired image, the comparison on sensitivities, contrast, noise and aspect ratio of two collimators are able to be evaluated. Results: ME Collimator is ahead of HE collimator in terms of sensitivity (ME collimator: 188.18 cps/MBq, HE collimator: 46.31 cps/MBq). For contrast, reconstruction image used by HE collimator with TEW, 16 subset 8 iteration applied CTAC is shown the highest contrast (TCQI=190.64). In same condition, ME collimator has lower contrast than HE collimator (TCQI=66.05). The lowest aspect ratio for ME collimator and HE collimator are 1.065 with SEW, CTAC (+) and 1.024 with TEW, CTAC (+) respectively. Conclusion: Selecting a proper collimator is important factor for image quality. This research finding tells that HE collimator, which is generally used for I-131 scan emitted high energy ${\gamma}$-ray is the most recommendable collimator for image quality. However, ME collimator is also applicable in condition of lower dose, lower sensitive if utilizing energy window, matrix size, IR parameter, CTAC and scatter correction appropriately.

  • PDF

Highly Accelerated SSFP Imaging with Controlled Aliasing in Parallel Imaging and integrated-SSFP (CAIPI-iSSFP)

  • Martin, Thomas;Wang, Yi;Rashid, Shams;Shao, Xingfeng;Moeller, Steen;Hu, Peng;Sung, Kyunghyun;Wang, Danny JJ
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.210-222
    • /
    • 2017
  • Purpose: To develop a novel combination of controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) with integrated SSFP (CAIPI-iSSFP) for accelerated SSFP imaging without banding artifacts at 3T. Materials and Methods: CAIPI-iSSFP was developed by adding a dephasing gradient to the balanced SSFP (bSSFP) pulse sequence with a gradient area that results in $2{\pi}$ dephasing across a single pixel. Extended phase graph (EPG) simulations were performed to show the signal behaviors of iSSFP, bSSFP, and RF-spoiled gradient echo (SPGR) sequences. In vivo experiments were performed for brain and abdominal imaging at 3T with simultaneous multi-slice (SMS) acceleration factors of 2, 3 and 4 with CAIPI-iSSFP and CAIPI-bSSFP. The image quality was evaluated by measuring the relative contrast-to-noise ratio (CNR) and by qualitatively assessing banding artifact removal in the brain. Results: Banding artifacts were removed using CAIPI-iSSFP compared to CAIPI-bSSFP up to an SMS factor of 4 and 3 on brain and liver imaging, respectively. The relative CNRs between gray and white matter were on average 18% lower in CAIPI-iSSFP compared to that of CAIPI-bSSFP. Conclusion: This study demonstrated that CAIPI-iSSFP provides up to a factor of four acceleration, while minimizing the banding artifacts with up to a 20% decrease in the relative CNR.

Design of a nonlinear ADC encoder to reduce the conversion errors in DBNS (DBNS 변환오차를 고려한 비선형 ADC 엔코더 설계)

  • Woo, Kyung-Haeng;Choi, Won-Ho;Kim, Jong-Soo;Choi, Jae-Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.249-254
    • /
    • 2013
  • A fast multiplier and ADC are essential to process the analog signals in real time. The double-base number system(DBNS) is known as an efficient method for this purpose. The DBNS uses the numbers 2 and 3 as the base numbers simultaneously. The system has an advantage of fast multiplication, less chip area, and low power consumption compared to the binary multiplier. However, the inherent errors of the log number's intrinsic tolerance in DBNS are accumulated in a FIR digital filter, so the signal-to-noise ratio(SNR) has a tendency to be degraded. In this paper, the nonlinear encoder of ADC is designed to compensate the accumulated errors of DBNS by analysing the error distributions of various filter coefficients. The new ADC does not sacrifice its own advantages because the encoder circuits are modified only. The experiments were done with an FIR filters those were designed to have -70dB of SNR in stop band. The proposed nonlinear ADC encoder could drop the SNR to -45dB in stop band, in contrast to -35dB with the linear encoder.

A Performance Comparison of Histogram Equalization Algorithms for Cervical Cancer Classification Model (평활화 알고리즘에 따른 자궁경부 분류 모델의 성능 비교 연구)

  • Kim, Youn Ji;Park, Ye Rang;Kim, Young Jae;Ju, Woong;Nam, Kyehyun;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.80-85
    • /
    • 2021
  • We developed a model to classify the absence of cervical cancer using deep learning from the cervical image to which the histogram equalization algorithm was applied, and to compare the performance of each model. A total of 4259 images were used for this study, of which 1852 images were normal and 2407 were abnormal. And this paper applied Image Sharpening(IS), Histogram Equalization(HE), and Contrast Limited Adaptive Histogram Equalization(CLAHE) to the original image. Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity index for Measuring image quality(SSIM) were used to assess the quality of images objectively. As a result of assessment, IS showed 81.75dB of PSNR and 0.96 of SSIM, showing the best image quality. CLAHE and HE showed the PSNR of 62.67dB and 62.60dB respectively, while SSIM of CLAHE was shown as 0.86, which is closer to 1 than HE of 0.75. Using ResNet-50 model with transfer learning, digital image-processed images are classified into normal and abnormal each. In conclusion, the classification accuracy of each model is as follows. 90.77% for IS, which shows the highest, 90.26% for CLAHE and 87.60% for HE. As this study shows, applying proper digital image processing which is for cervical images to Computer Aided Diagnosis(CAD) can help both screening and diagnosing.

Does the metal artifact reduction algorithm activation mode influence the magnitude of artifacts in CBCT images?

  • Fontenele, Rocharles C.;Nascimento, Eduarda H.L.;Santaella, Gustavo M.;Freitas, Deborah Queiroz
    • Imaging Science in Dentistry
    • /
    • v.50 no.1
    • /
    • pp.23-30
    • /
    • 2020
  • Purpose: This study was conducted to assess the effectiveness of a metal artifact reduction (MAR) algorithm activated at different times during cone-beam computed tomography (CBCT) acquisition on the magnitude of artifacts generated by a zirconium implant. Materials and Methods: Volumes were obtained with and without a zirconium implant in a human mandible, using the OP300 Maxio unit. Three modes were tested: without MAR, with MAR activated after acquisition, and with MAR activated before acquisition. Artifacts were assessed in terms of the standard deviation (SD) of gray values and the contrast-to-noise ratio (CNR) in 6 regions of interest with different distances (10 to 35 mm, from the nearest to the farthest) and angulations(70° to 135°) from the implant region. Results: In the acquisitions without MAR, the regions closer to the implant(10 and 15mm) had a higher SD and lower CNR than the farther regions. When MAR was activated (before or after), SD values did not differ among the regions (P>0.05). The region closest to the implant presented a significantly lower CNR in the acquisitions without MAR than when MAR was activated after the acquisition; however, activating MAR before the acquisition did not yield significant differences from either of the other conditions. Conclusion: Both modes of MAR activation were effective in decreasing the magnitude of CBCT artifacts, especially when the effects of the artifacts were more noticeable.

Neurobiological Pathophysiology of Attention Deficit Hyperactivity Disorder (주의력결핍 과잉행동장애의 신경생물학적 병태생리)

  • Park, Hyung Bae;Joo, Yeol
    • Journal of Yeungnam Medical Science
    • /
    • v.17 no.2
    • /
    • pp.108-122
    • /
    • 2000
  • Background: Models of attention deficit hyperactivity disorder(ADHD) that have proposed a hypodopaminergic state resulting in hypofunction of the prefrontal circuitry have assumed a unitary dopamine system, which largely ignores the distinct functional differences between mesocortical dopamine system and nigrostriatal dopamine system. Purpose: The author's goal was to develop a pathophysiological model for ADHD with greater explanotory power than dopaminergic hypofunction hypothesis in prefronal circuitry. Material and Methods: Published clinical findings on ADHD were integrated with data from genetic, pharmacological, neuroimaging studies in human and animals. Results: Molecular genetic studies suggest that three genes may increase the susceptibility to ADHD. The three candidate genes associated with ADHD are each involved in dopaminergic function, and this consistent with the neurobiologic studies implicating catecholamines in the etiology of ADHD. Pharmacological data also provide compelling support for dopamine and noradrenergic hypothesis of ADHD. Neuroimaging studies lend substantial support for the hypothesis that right-sided abnormalities of prefrontal-basal ganglia circuit would be found in ADHD. Conclusions: The present hypothesis takes advantage of the major differences between the two pertinent dopamine systems. Mesocortical dopamine system, which largely lacks inhibitory autoreceptors, is ideally positioned to regulate cortical inputs, thus improving the signal-to-noise ratio for biologically valued signals. In this circuit, therapeutic doses of stimulants are hypothesized to increase postsynaptic dopamine effects and enhance executive functions. By contrast, symptoms of hyperactivity/impulsivity in ADHD are hypothesized to be associated with relative overactivity of nigrostriatal circuit. This nigrostriatal circuit is tightly regulated by inhibitory autoreceptoors as well as by long distance feedback from the cortex, and slow diffusion of therapeutic doses of stimulant via oral administration is hypothesized to produce a net inhibition of dopaminergic neurotransmission and improves hyperactivity.

  • PDF

Measurement Reliability of Axial Length of the Human Eye by using Partial Coherence Interferometry

  • Kim, Jae-Hyung;Moon, Tae Hwan;Chae, Ju Byung;Hyung, Sungmin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.546-550
    • /
    • 2014
  • To investigate the minimum near-infrared ray intensity required (quantifiable threshold value) for consistent measurements of axial length (AL) using partial coherence interferometry (PCI), we attached two polarizing lenses (PL) to two types of PCI (IOLmaster, ALscan). The near-infrared ray intensity of PCI was modified by rotating the axis of one PL at intervals of 5 degrees. The right eye of each volunteer was measured three times and the AL and signal-to-noise ratio (SNR) was recorded five times for each measurement. Reduction of light intensity was theoretically estimated using Malus' Law. AL was measured consistently with both IOLmaster and ALscan until they reached 55 degrees (1.33 % of intensity) and 60 degrees (0.77%), respectively (P = 0.343, Log-rank test). In contrast, SNR decreased as light intensity decreased. In addition, to analyze media opacities that precluded measurement of AL, we retrospectively reviewed the medical records of patients unmeasurable by PCI (ALscan) from May to November 2013. Thirty-eight of 473 eyes (8.0%) could not be measured using ALscan due to media opacities, such as severe posterior subcapsular cataract (PSC, 11 eyes), hypermature cataract (9 eyes), and vitreous hemorrhage (18 eyes). The mean grades of vitreous haze and PSC were $7.72{\pm}0.96$ and $4.45{\pm}1.04$, respectively. In conclusion, up to 0.77-1.33% of near-infrared rays decreased, and AL could be measured consistently.

Comparison of X-ray computed tomography and magnetic resonance imaging to detect pest-infested fruits: A pilot study

  • Kim, Taeyun;Lee, Jaegi;Sun, Gwang-Min;Park, Byung-Gun;Park, Hae-Jun;Choi, Deuk-Soo;Ye, Sung-Joon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.514-522
    • /
    • 2022
  • Non-destructive testing (NDT) technology is a widely used inspection method for agricultural products. Compared with the conventional inspection method, there is no extensive sample preparation for NDT technology, and the sample is not damaged. In particular, NDT technology is used to inspect the internal structure of agricultural products infested by pests. The introduction and spread of pests during the import and export process can cause significant damage to the agricultural environment. Until now, pest detection in agricultural products and quarantine processes have been challenging because they used external inspection methods. However, NDT technology is advantageous in these inspection situations. In this pilot study, we investigated the feasibility of X-ray computed tomography (X-ray CT) and magnetic resonance imaging (MRI) to identify pest infestation in agricultural products. Three kinds of artificially pest-infested fruits (mango, tangerine, and chestnut) were non-destructively inspected using X-ray CT and MRI. X-ray CT was able to identify all pest infestations in fruits, while MRI could not detect the pest-infested chestnut. In addition, X-ray CT was superior to the quarantine process than MRI based on the contrast-to-noise ratio (CNR), image acquisition time, and cost. Therefore, X-ray CT is more appropriate for the pest quarantine process of fruits than MRI.