• Title/Summary/Keyword: Contour Detection

Search Result 227, Processing Time 0.027 seconds

Method of Human Detection using Edge Symmetry and Feature Vector (에지 대칭과 특징 벡터를 이용한 사람 검출 방법)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.57-66
    • /
    • 2011
  • In this paper, it is proposed for algorithm to detect human efficiently using a edge symmetry and gradient directional characteristics in realtime by the feature extraction in a single input image. Proposed algorithm is composed of three stages, preprocessing, region partition of human candidates, verification of candidate regions. Here, preprocessing stage is strong the image regardless of the intensity and brightness of surrounding environment, also detects a contour with characteristics of human as considering the shape features size and the condition of human for characteristic of human. And stage for region partition of human candidates has separated the region with edge symmetry for human and size in the detected contour, also divided 1st candidates region with applying the adaboost algorithm. Finally, the candidate region verification stage makes excellent the performance for the false detection by verifying the candidate region using feature vector of a gradient for divided local area and classifier. The results of the simulations, which is applying the proposed algorithm, the processing speed of the proposed algorithms is improved approximately 1.7 times, also, the FNR(False Negative Rate) is confirmed to be better 3% than the conventional algorithm which is a single structure algorithm.

Finger Detection using a Distance Graph (거리 그래프를 이용한 손가락 검출)

  • Song, Ji-woo;Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1967-1972
    • /
    • 2016
  • This paper defines a distance graph for a hand region in a depth image and proposes an algorithm detecting finger using it. The distance graph is a graph expressing the hand contour with angles and Euclidean distances between the center of palm and the hand contour. Since the distance graph has local maximum at fingertips' position, we can detect finger points and recognize the number of them. The hand contours are always divided into 360 angles and the angles are aligned with the center of the wrist as a starting point. And then the proposed algorithm can well detect fingers without influence of the size and orientation of the hand. Under some limited recognition test conditions, the recognition test's results show that the recognition rate is 100% under 1~3 fingers and 98% under 4~5 fingers and that the failure case can also be recognized by simple conditions to be available to add.

Detection of Brain Ventricle by Using Wavelet Transform and Automatic Thresholding in MRI Brain Images (MRI 뇌 영상에서 웨이브릿 변환과 자동적인 임계치 설정을 이용한 뇌실 검출)

  • Won, Chul-Ho;Kim, Dong-Hun;Woo, Sang-Hyo;Lee, Jung-Hyun;Kim, Chang-Wook;Chung, Yoon-Su;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.9
    • /
    • pp.1117-1124
    • /
    • 2007
  • In this paper, an algorithm that can define the threshold value automatically proposed in order to detect a brain ventricle in MRI brain images. After the wavelet transform, edge sharpness, which means the average magnitude of detail signals on the contour of the object, was computed by using the magnitude of horizontal and vertical detail signals. The contours of a brain ventricle were detected by increasing the threshold value repeatedly and computing edge sharpness. When the edge sharpness became maximal, the optimal threshold was determined, and the detection of a brain ventricle was accomplished finally. In this paper, we compared the proposed algorithm with the geodesic active contour model numerically and verified the efficiency of the proposed algorithm by applying real MRI brain images.

  • PDF

AUTOMATIC ADJUSTMENT OF DISCREPANCIES BETWEEN LIDAR DATA STRIPS - USING THE CONTOUR TREE AND ITERATIVE CLOSEST POINT ALGORITHM

  • Lee, Jae-Bin;Han, Dong-Yeob;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.500-503
    • /
    • 2006
  • To adjust the discrepancy between Light Detection and Ranging (LIDAR) strips, previous researches generally have been conducted using conjugate features, which are called feature-based approaches. However, irrespective of the type of features used, the adjustment process relies upon the existence of suitable conjugate features within the overlapping area and the ability of employed methods to detect and extract the features. These limitations make the process complex and sometimes limit the applicability of developed methodologies because of a lack of suitable features in overlapping areas. To address these drawbacks, this paper presents a methodology using area-based algorithms. This approach is based on the scheme that discrepancies make complex the local height variations of LIDAR data whithin overlapping area. This scheme can be helpful to determine an appropriate transformation for adjustment in the way that minimizes the geographical complexity. During the process, the contour tree (CT) was used to represent the geological characteristics of LIDAR points in overlapping area and the Iterative Closest Points (ICP) algorithm was applied to automatically determine parameters of transformation. After transformation, discrepancies were measured again and the results were evaluated statistically. This research provides a robust methodology without restrictions involved in methods that employ conjugate features. Our method also makes the overall adjustment process generally applicable and automated.

  • PDF

A New EGG System Design and Speech Analysis for Quantitative Analysis of Human Glottal Vibration Patterns (성문진동 패턴의 정량적인 해석을 위한 새로운 시스템 설계와 음성분석)

  • 김종찬;이재천;김덕원;오명환;윤대희;차일환
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.427-433
    • /
    • 1999
  • The purpose of the study is to develop an improved pitch extraction method that can be used in a variety of speech applications such as high-puality compression and vocoding, and recognition and synthesis of speech. To do so, we develop a new electroglottograph (EGG) measurement system that is based on the four modulation-demodulation type spot electrodes for detecting the EGG signals. Then, the glottal closure instant(GCI) is determined from the EGG signals on a real-time basis. We can obtain the pitch contour using the information on the GCI. It turns out that the new pitch contour algorithm (PCA) operates more reliably as compared to the conventional speech-only-based algorithm. In addition, we study the speech source models and glottal vibratory patterns for Koreans by measuring and analyzing the diversified vibration patterns of the vocal from the EGG signals.

  • PDF

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF

Upper lip tie wrapping into the hard palate and anterior premaxilla causing alveolar hypoplasia

  • Heo, Woong;Ahn, Hee Chang
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.1
    • /
    • pp.48-50
    • /
    • 2018
  • Bony anomaly caused by lip tie is not many reported yet. There was a case of upper lip tie wrapping into the anterior premaxilla. We represent a case of severe upper lip tie of limited lip motion, upper lips curling inside, and alveolar hypoplasia. Male patient was born on June 3, 2016. He had a deep philtral sulcus, low vermilion border and deep cupid's bow of upper lip due to tension of short, stout and very tight frenulum. His upper lip motion was severely restricted in particular lip eversion. There was anterior alveolar hypoplasia with deep sulcus in anterior maxilla. Resection of frenulum cord with Z-plasty was performed at anterior premaxilla and upper lip sulcus. Frenulum was tightly attached to gingiva through gum and into hard palate. Width of frenulum cord was about 1 cm, and length was about 3 cm. He gained upper lip contour including cupid's bow and normal vermilion border after the surgery. This case is severe upper lip tie showing the premaxillary hypoplasia, abnormal lip motion and contour for child. Although there is mild limitation of feeding with upper lip tie child, early detection and treatment are needed to correct bony growth.

A Study on Shape Registration Using Level-Set Model and Surface Registration Volume Rendering of 3-D Images (레밸 세트 모텔을 이용한 형태 추출과 3차원 영상의 표면 정합 볼륨 렌더링에 관한 연구)

  • 김태형;염동훈;주동현;김두영
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.29-34
    • /
    • 2002
  • In this paper, we present a new geometric active contour model based on level set methods introduced by Osher and Sethian for detection of object boundaries or shape and we adopt anisotropic diffusion filtering method for removing noise from original image. In order to minimize the processing time, we use the narrow band method which allows us to perform calculations in the neighborhood of the contour and not in the whole image. Using anisotropic diffusion filtering for each slice, we have the result with reduced noise and extracted exact shape. Volume rendering operates on three-dimensional data, processes it, and transforms it into a simple two-dimensional image.

  • PDF

A Study on Application Method of Contour Image Learning to improve the Accuracy of CNN by Data (데이터별 딥러닝 학습 모델의 정확도 향상을 위한 외곽선 특징 적용방안 연구)

  • Kwon, Yong-Soo;Hwang, Seung-Yeon;Shin, Dong-Jin;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.171-176
    • /
    • 2022
  • CNN is a type of deep learning and is a neural network used to process images or image data. The filter traverses the image and extracts features of the image to distinguish the image. Deep learning has the characteristic that the more data, the better models can be made, and CNN uses a method of artificially increasing the amount of data by means of data augmentation such as rotation, zoom, shift, and flip to compensate for the weakness of less data. When learning CNN, we would like to check whether outline image learning is helpful in improving performance compared to conventional data augmentation techniques.

MRU-Net: A remote sensing image segmentation network for enhanced edge contour Detection

  • Jing Han;Weiyu Wang;Yuqi Lin;Xueqiang LYU
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3364-3382
    • /
    • 2023
  • Remote sensing image segmentation plays an important role in realizing intelligent city construction. The current mainstream segmentation networks effectively improve the segmentation effect of remote sensing images by deeply mining the rich texture and semantic features of images. But there are still some problems such as rough results of small target region segmentation and poor edge contour segmentation. To overcome these three challenges, we propose an improved semantic segmentation model, referred to as MRU-Net, which adopts the U-Net architecture as its backbone. Firstly, the convolutional layer is replaced by BasicBlock structure in U-Net network to extract features, then the activation function is replaced to reduce the computational load of model in the network. Secondly, a hybrid multi-scale recognition module is added in the encoder to improve the accuracy of image segmentation of small targets and edge parts. Finally, test on Massachusetts Buildings Dataset and WHU Dataset the experimental results show that compared with the original network the ACC, mIoU and F1 value are improved, and the imposed network shows good robustness and portability in different datasets.