• Title/Summary/Keyword: Continuous stirred tank reactor (CSTR)

Search Result 51, Processing Time 0.029 seconds

OBSERVER-BASED INPUT-OUTPUT LINEARIZATION CONTROL OF A MULTIVARIABLE CONTINUOUS CHEMICAL REACTOR

  • Mohamed, Bouhamida;Bachir, Daaou;Abdellah, Mansouri;Mohammed, Chenafa
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.641-658
    • /
    • 2012
  • The goal of this paper is to develop a nonlinear observer-based control strategy for a multi-variables continuous stirred tank reactor (CSTR). A new robust nonlinear observer is constructed to estimate the whole process state variables. The observer is coupled with a nonlinear controller, designed based on the input-output linearization for controlling the concentration and reactor temperature. The closed loop system is shown to be globally asymptotically stable based on Lyapunov arguments. Finally, computer simulations are developed for showing the performance of the proposed controller.

Effect of Copper on the Suspended Growth Biological Wastewater Treatment (부유 성장식 생물학적 폐수처리에 미치는 구리의 영향)

  • Seo, Jeong-Beom;Hwang, Chang-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.479-484
    • /
    • 2013
  • This study was performed to examine the effect of copper on the biodegradability, nitrification, denitrification and oxygen uptake rate (OUR) using batch reactor and continuous flow stirred tank reactor (CSTR) of anaerobic/anoxic/oxic ($A_2/O$). The results of this study can be summarized as follows. In the case of the effect of copper on organic treatment, the bad effect initiated when it was above 4.5 mg/L copper with batch reactor and above 2.0 mg/L copper with CSTR. Concerning the case on nitrification and removal of nitrogen, it showed bad effect when copper was above 4.5 mg/L with batch reactor for nitrification and 1.0 mg/L with CSTR for the removal of nitrogen. The bad effect on the removal of phosphorus began when it was 4.5 mg/L copper with batch reactor and 2 mg/L copper with CSTR. In the case of OUR, it decreased as microbial activity was affected when copper concentration was above 1.5 mg/L in both case of batch reactor and CSTR.

Temperature Control of a CSTR using Fuzzy Gain Scheduling (퍼지 게인 스케쥴링을 이용한 CSTR의 온도 제어)

  • Kim, Jong-Hwa;Ko, Kang-Young;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.839-845
    • /
    • 2013
  • A CSTR (Continuous Stirred Tank Reactor) is a highly nonlinear process with varying parameters during operation. Therefore, tuning of the controller and determining the transition policy of controller parameters are required to guarantee the best performance of the CSTR for overall operating regions. In this paper, a methodology employing the 2DOF (Two-Degree-of-Freedom) PID controller, the anti-windup technique and a fuzzy gain scheduler is presented for the temperature control of the CSTR. First, both a local model and an EA (Evolutionary Algorithm) are used to tune the optimal controller parameters at each operating region by minimizing the IAE (Integral of Absolute Error). Then, a set of controller parameters are expressed as functions of the gain scheduling variable. Those functions are implemented using a set of "if-then" fuzzy rules, which is of Sugeno's form. Simulation works for reference tracking, disturbance rejecting and noise rejecting performances show the feasibility of using the proposed method.

Surface Reaction Modeling for Plasma Etching of SiO2 Thin Film (실리콘 산화막의 플라즈마 식각에 대한 표면반응 모델링)

  • Im, YeonHo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.520-527
    • /
    • 2006
  • A realistic surface model is presented for prediction of various surface phenomena such as polymer deposition, suppression and sputtering as a function of incidence ion energy in high density fluorocarbon plasmas. This model followed ion enhanced etching model using the "well-mixed" or continuous stirred tank reactor (CSTR) assumption to the surface reaction zone. In this work, we suggested ion enhanced polymer formation and decomposition mechanisms that can capture $SiO_2$ etching through a steady-state polymer film on $SiO_2$ under the suppression regime. These mechanisms were derived based on experimental data and molecular dynamic simulation results from literatures. The model coefficients are obtained from fits to available beam and plasma experimental data. In order to show validity of our model, we compared the model results to high density fluorocarbon plasma etching data.

Effect of Zinc on the Suspended Growth Biological Wastewater Treatment (부유 성장식 생물학적 폐수처리에 미치는 아연의 영향)

  • Seo, Jeong-Beom;Hwang, Chang-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.228-233
    • /
    • 2015
  • This study was performed to examine the effect of zinc on the biodegradability, nitrification, denitrification and oxygen uptake rate (OUR) using batch reactor and continuous flow stirred tank reactor (CSTR) of anaerobic/anoxic/oxic ($A^2/O$). The results of this study can be summarized as follows. In the case of the effect of zinc on organic treatment, zinc had no effect up to 12 mg/L with batch reactor but biodegradability was lowered when it was above 3.0 mg/L with CSTR. Concerning the case on nitrification and removal of nitrogen, nitrification rate was lowered when zinc was above 6.0 mg/L with batch reactor and removal rate of nitrogen was lowered when zinc was above 3.0 mg/L with CSTR. Removal rate of phosphorus was lowered when it was above 6.0 mg/L zinc with batch reactor and above 3.0 mg/L zinc with CSTR. In the case of OUR, it decreased as microbial activity was affected when zinc concentration was above 3.0 mg/L in CSTR.

Temperature Control of a CSTR using a Nonlinear PID Controller (비선형 PID 제어기를 사용한 CSTR의 온도 제어)

  • Lee, Joo-Yeon;So, Gun-Baek;Lee, Yun-Hyung;So, Myung-Ok;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.482-489
    • /
    • 2015
  • CSTR (Continuous Stirred Tank Reactor) which plays a key role in the chemical plants exhibits highly nonlinear behavior as well as time-varying behavior during operation. The control of CSTRs in the whole operating range has been a challenging problem to control engineers. So, a variety of feedback control forms and their tuning methods have been implemented to guarantee the satisfactory performance. This paper presents a scheme of designing a nonlinear PID controller incorporating with a GA (Genetic Algorithm) for the temperature control of a CSTR. The gains of the NPID controller are composed of easily implementable nonlinear functions based on the error and/or the error rate and its parameters are tuned using a GA by minimizing the ITAE (Integral of Absolute Error). Simulation works for reference tracking and disturbance rejecting performances and robustness to parameter changes show the feasibility of the proposed method.

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.

Evaluation of Biocatalyst and Bioreactor System for the Continuous Treatment of Trichloroethylene (미생물 생촉매를 이용한 Trichloroethylene 연속처리용 생물반응기 시스템 평가)

  • 이은열
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.970-975
    • /
    • 2003
  • Microbial trichloroethylene (TCE) degradation using trickling biofilter (TBF) is a cost-effective treatment method, in which monooxygenase (MO) fortuitously transforms TCE via cometabolism. Simple TBF, however, could not be stably operated for long-term treatment of TCE due to the contradictory characteristics of cometabolism. In this paper, microbial biocatalyst and biofilm reactor system, a two-stage continuous stirred tank reactor (CSTR)/TBF system using Burkholderia cepacia G4 and Methylosinus trichosporium OB3b, are evaluated for the long-term continuous treatment of TCE. The maximum TCE elimination capacities were in the range of 28 and 525 mg TCE/1$.$day. The reactor systems were stably operated for more than 3∼12 months.

Molecular Analysis of the Microorganisms in a Thermophilic CSTR used for Continuous Biohydrogen Production (연속수소생성에 사용되는 고온 CSTR 내의 미생물의 분자적 분석)

  • Oh, You-Kwan;Park, Sung-Hoon;Ahn, Yeong-Hee
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.431-437
    • /
    • 2005
  • Molecular methods were employed to investigate microorganisms in a thermophilic continuous stirred tank reactor(CSTR) used for continuous $H_2$ production. The reactor was inoculated with heat-treated anaerobic sludge and fed with a glucose-based medium. Denaturing gradient gel electrophoresis showed dynamic changes of bacterial populations in the reactor during 43 days of operation. Gas composition was constant from approximately 14 days but population shift still occurred. Populations affiliated with Fervidobactrium gondwanens and Thermoanaerobacterium thermosaccharolyticum were dominant on 21 and 41 days, respectively. Keeping pH of the medium at 5.0 could suppress methanogenic activity that was detected during initial operation period. $CH_4$ and mcrA detected in the samples obtained from the reactor or inoculum suggested the heat treatment condition employed in this study is not enough to remove methanogens in the inoculum. PCR using primer sets specific to 4 main orders of methanogens suggested that major $H_2$-consuming methanogens in the CSTR belong to the order Methanobacteriales.

Thermophilic Biohydrogen Production from Glucose with a Long-term Operation of CSTR (CSTR의 장기운전을 통한 포도당으로부터의 고온 수소생산)

  • Ahn, Yeong-Hee;Oh, You-Kwan;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.425-430
    • /
    • 2005
  • Thermophilic $H_2$ was produced for 1 year using a bench-scale continuous stirred tank reactor(CSTR). The CSTR was inoculated with anaerobically digested sludge after heat treatment and fed with a glucose-based medium. The reactor showed relatively short start-up period(30 days) and high maximal $H_2$ yield(2.4 mol $H_2/mol$ glucose). Keeping pH 5.0 or less suppressed methanogenic activity. Bacteria affiliated with Thermoanaerobacterium thermosaccharolyticum kept being dominant from approximately 40 days as determined by DGGE. Environmental perturbation(pH or temperature) caused the decrease of biomass concentration in the reactor and the instability of reactor performance, $H_2$ production rate and $H_2$ yield. The unstable performance was accompanied with high concentration of lactate in the effluent. Taken together, the poor recovery of CSTR after perturbations could be partly explained by low biomass concentration and/or metabolic shift of the major population in the CSTR.