Molecular Analysis of the Microorganisms in a Thermophilic CSTR used for Continuous Biohydrogen Production

연속수소생성에 사용되는 고온 CSTR 내의 미생물의 분자적 분석

  • Oh, You-Kwan (Department of Chemical and Biochemical Engineering, Pusan National University) ;
  • Park, Sung-Hoon (Department of Chemical and Biochemical Engineering, Pusan National University) ;
  • Ahn, Yeong-Hee (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
  • 오유관 (부산대학교 화학생명공학과) ;
  • 박성훈 (부산대학교 화학생명공학과) ;
  • 안영희 (한국과학기술원 생명화학공학과)
  • Published : 2005.12.30

Abstract

Molecular methods were employed to investigate microorganisms in a thermophilic continuous stirred tank reactor(CSTR) used for continuous $H_2$ production. The reactor was inoculated with heat-treated anaerobic sludge and fed with a glucose-based medium. Denaturing gradient gel electrophoresis showed dynamic changes of bacterial populations in the reactor during 43 days of operation. Gas composition was constant from approximately 14 days but population shift still occurred. Populations affiliated with Fervidobactrium gondwanens and Thermoanaerobacterium thermosaccharolyticum were dominant on 21 and 41 days, respectively. Keeping pH of the medium at 5.0 could suppress methanogenic activity that was detected during initial operation period. $CH_4$ and mcrA detected in the samples obtained from the reactor or inoculum suggested the heat treatment condition employed in this study is not enough to remove methanogens in the inoculum. PCR using primer sets specific to 4 main orders of methanogens suggested that major $H_2$-consuming methanogens in the CSTR belong to the order Methanobacteriales.

1. 고온 CSTR은 비교적 짧은 start-up 기간과 높은 $H_2$ 수율을 나타내었다. $H_2$ 생산속도와 $H_2$ 수율의 안정화를 근거로 판단컨대 start-up 기간은 30일 이내이었으며, 최고 $H_2$ 수율은 2.4 mol $H_2/mol$ glucose이었다. 2. 비교적 긴 HRT와 침전조를 이용한 biomass의 재순환에도 불구하고, 유입 포도당의 농도가 낮아 biomass 농도는 다른 중온 반응기에서 보고된 것에 비해 낮은 편이었다. 3. 운전 초기에 $CH_4$이 발생하였으나 8일 이후부터는 pH를 1.0 이하로 유지하였더니 14일 이후로는 거의 검출되지 않는 것으로 봐서 메탄생성균이 식종균에 남아 있더라도 반응기 운전조건을 통해 $CH_4$ 발생을 억제할 수 있었다. 4. 식종 미생물과 반응기로부터 취한 시료의 DGGE band 패튼이 다른 것으로 보아 고온 CSTR 조건에서 식종된 미생물 군집의 조성이 변화하였음을 알 수 있었다. 5. DGGE 분석결과 초기 43일간의 운전기간 동안에 관찰된 미생물 군집조성은 동적인 변화를 나타내었다. 약 14일부터는 biogas 조성이 거의 일정하였으나 미생물 군집은 동적 변화를 나타내었다. F. gondwanens와 T. Thermoanaerobacterium과 계통발생학적으로 가장 연관이 있는 개체군들이 운전 21일과 41일째에 각각 우점으로 나타났다. 6. 본 연구에서 식종 슬러지를 열처리하는데 사용한 조건은 메탄생성균을 완전히 제거하는데 불충분하다는 것은 운전 초기에 $CH_4$이 biogas에서 검출되었고, 식종 슬러지와 반응기로부터 취한 시료에서 메탄생성균이 가지는 mcrA 유전자가 PCR로 증폭되었으므로 알 수 있었다. 7. 메탄생성균의 주요 목에 특이적인 primers를 사용하여 PCR을 실시한 결과 식종슬러지에 있는 메탄생성균들은 주로 Methanosarcinales와 Methanomicrobiales 목에 속하였으며, $CH_4$이 발생했던 때의 반응기에 있는 메탄생성균들은 주로 Methanobacteriales 목에 해당되는 것으로 나타났다.

Keywords

References

  1. Das, D. and T. N. VezirogIu (2001), Hydrogen production by biological processes: a survey of literature, Int. J. Hydrogen Energy 26, 13-28 https://doi.org/10.1016/S0360-3199(00)00058-6
  2. Angenent, L. T., K. Karim, M. H. AI-Dahhan, B. A. Wrenn, and R. Domiguez-Espinosa (2004), Production of bioenergy and biochemicals from industrial and agricultural wastewater, Trends Biotechnol. 22, 477-485 https://doi.org/10.1016/j.tibtech.2004.07.001
  3. Nath, K. and D. Das (2004), Improvement of fermentative hydrogen production: various approaches, Appl. Microbiol. Biotechnol. 65, 520-529
  4. Zinder, S. H. (1990), Conversion of acetic acid to methane by thermophiles, FEMS Microbiol. Rev. 75, 125-138 https://doi.org/10.1111/j.1574-6968.1990.tb04090.x
  5. Ahn, Y., E.-J. Park, Y. K. Oh, S. Park, G. Webster, and A. J. Weightman (2005), Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production, FEMS Microbiol. Lett. 249, 31-38 https://doi.org/10.1016/j.femsle.2005.05.050
  6. Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi (2001), Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora, J Biosci. Bioeng. 92, 397-400 https://doi.org/10.1263/jbb.92.397
  7. Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi (2001), Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost, Appl. Microbiol. Biotechnol. 57, 555-562 https://doi.org/10.1007/s002530100806
  8. Liu, H., T. Zhang, and H. H. Fang (2003), Thermophilic H, production from a cellulose-containing wastewater, Biotechnol. Lett. 25, 365-369 https://doi.org/10.1023/A:1022341113774
  9. Shin, H.-S. and J-.H. Yoon (2005), Conversion of food waste into hydrogen by thermophilic acidogenesis, Biodegradation 16, 33-44 https://doi.org/10.1007/s10531-004-0377-9
  10. Van Groenestijn, J. W., J. H. O. Hazewinkel, M. Nienoord, and P. J. T. Bussmann, (2002), Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range, Int. J. Hydrogen Energy 27, 1141-1147 https://doi.org/10.1016/S0360-3199(02)00096-4
  11. Oh, Y.-K., S. H. Kim, M.-S. Kim, and S. Park (2004), Thermophilic biohydrogen production from glucose with trickling bioftlter, Biotechnol. Bioeng. 88, 690-698 https://doi.org/10.1002/bit.20269
  12. Ahn, Y., Y-K. Oh, and S. Park (2005), Thermophilic biohydrogen production from glucose with a long-term operation of CSTR, Kor. J. Biotechnol. Bioeng. 20, 423-427
  13. American Public Health Association (1995). Standard methods for examination of water and wastewater, 19th ed., American Public Health Association, Washington DC, USA
  14. Hales, B. A., C. Edwards, D. A. Ritchie, G. Hall, R. W. Pickup, and J. R. Saunders (1996), Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis, Appl. Environ. Microbiol. 62, 668-675
  15. Luton, P. E., J. M. Wayne, R. J. Sharp, and P. W. Riley (2002), The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill, Microbiology 148, 3521-3530 https://doi.org/10.1099/00221287-148-11-3521
  16. Banning, N., F. Brock, J. C. Fry, R. J. Parkes, E. R. C. Hornibrook, and A. J. Weightman (2005), Investigation of the methanogen population structure and activity in a brackish lake sediment, Environ. Microbiol. 7, 947-960 https://doi.org/10.1111/j.1462-2920.2004.00766.x
  17. Chen, C. C., and C. Y. Lin (2001), Start-up of anaerobic hydrogen producing reactors seeded with sewage sludge, Acta Biotechnologica 21, 371-379 https://doi.org/10.1002/1521-3846(200111)21:4<371::AID-ABIO371>3.0.CO;2-Z
  18. Oh, Y.-K. (2004), Biological hydrogen production by Citrobacter sp. and development of thermophilic process using trickling biofilter reactor. Ph.D Dissertation, Dept. of Chemical and Biochemical Engineering, Pusan National University, Busan, Korea
  19. Andrews, K. T. and B. K. Patel (1996), Fervidobacterium goruiwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia, Int. J. Syst. Bacteriol. 46, 265-269 https://doi.org/10.1099/00207713-46-1-265
  20. Lee, C. K. and Z. J. Ordal (1967), Regulatory effect of pyruvate on the glucose metabolism of Clostridium thermosaccharolyticum, J. Bacteriol. 94, 530-536
  21. Lueders, T., K.-J. Chin, R. Conrad and M. Friedrich (2001), Molecular analyses of methyl-coenzyme M reductase $\alpha$-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeallineage, Environ. Microbiol. 3, 194-204 https://doi.org/10.1046/j.1462-2920.2001.00179.x