• Title/Summary/Keyword: Continuous sliding mode

Search Result 98, Processing Time 0.037 seconds

Stability Criterion for Sampled-Data System with Sliding Mode Controller (슬라이딩 모드 제어기가 적용된 샘플치 시스템에 대한 안정도 판별 조건)

  • Park, Heum-Yong;Jo, Young-Hun;Park, Kang-Bak
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.135-138
    • /
    • 2011
  • Although most of control methods have been studied in the continuous-time domain, the actual control systems have been implemented using MCU (Micro Control Unit) and/or microprocessors so that the overall systems turn to be sampled-data systems. In this case, the stability criterion of the closed-loop system is not easy to derive. In this paper, a simple stability criterion for the sampled-data system with sliding mode controller is derived.

POSITION CONTROL OF D.C. SERVO MOTOR USING VARIABLE STRUCTURE WITH SLIDING MODE (슬라이딩 모드에 의한 직류 서브 모터의 위치 제어)

  • Lee, Yoon-Jong;Yuhn, Hyeong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.552-554
    • /
    • 1987
  • A design principles of discontinuous control are studied and then are applied to position control of D. C. sevo drive fed by a four-quadrant chopper. Variable structure control with sliding mode gives fast dynamic response with no overshoot. And the resulting system bas good robust properties independent of the wide variations of electrical, mechanical parameters and external disturbances without any system identification. But the high frequency chatter component of control input in the sliding mode is undesirarable. A continuous control law that is a approximation to discontinuous control law is used for design.

  • PDF

A New Approach to Control System Design for Multivariable Systems Using Sliding Mode (슬라이딩모드를 이용한 다연수계통의 새로운 제어계통 설계방법)

  • 박귀태;정군평;김동식;임형용
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.1
    • /
    • pp.43-50
    • /
    • 1989
  • In this paper we present a new approach to control system design for multivariable systems using a sliding mode. In the applications of variable structure system (VSS) theory to multivariable systems, there exist some difficulties such as how to determine switching gains and how to reduce chattering phenomena in input and state trajectories. To cope with these drawbacks we introduce switching dynamics instead of switching logics to obtain the sliding mode. Consequently, we can obtain the new design approach which is much simpler than the VSS theory, And there do not exist chattering phenomena in this method because the obtained control inputs are continuous. Hierarchical control concepts are used to the control system design. Numerical examples are discussed as illustrations.

  • PDF

A New Robust Output Feedback Variable Structure Controller for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties and Matched Disturbance

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.206-213
    • /
    • 2014
  • In this note, a new robust nonlinear output feedback variable structure controller is first systematically and generally designed for the output control of more affine uncertain nonlinear systems with mismatched uncertainties and matched disturbance. A transformed integral output feedback sliding surface with a most simple form is applied in order to remove the reaching phase problems. The closed loop exponential stability and the existence condition of the sliding mode on the integral output feedback sliding surface is investigated with a corresponding output feedback control input in Theorem 1. For practical application the continuous implementation of the control input is made by the modified saturation function. The effectiveness of the proposed controller is verified through a design example and simulation study.

A Study on a Intelligence Depth Control of Underwater Flight Vehicle (Underwater Flight Vehicle의 지능형 심도 제어에 관한 연구)

  • 김현식;황수복;신용구;최중락
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.30-41
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, It needs a robust performance which can get over the nonlinear characteristics due to hull shape. Second, It needs an accurate performance which has the small overshoot phenomenon and steady state error to avoid colliding with ground surface and obstacles. Third, It needs a continuous control input to reduce the acoustic noise. Finally, It needs an effective interpolation method which can reduce the dependency of control parameters on speed. To solve these problems, we propose a Intelligence depth control method using Fuzzy Sliding Mode Controller and Neural Network Interpolator. Simulation results show the proposed control scheme has robust and accurate performance by continuous control input and has no speed dependency problem.

  • PDF

Design of the Fuzzy Sliding Mode Controller and Neural Network Interpolator for UFV Depth Control

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.176.2-176
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over nonlinear characteristics. Second, it needs accurate performance which have small overshoot phenomenon and steady state error. Third, it needs continuous control input. Finally, it needs interpolation method which can solve the speed dependency problem of controller parameters. To solve these problems, we propose adepth control method using Fuzzy Sliding Mode Controller and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

A modified sliding mode controller for the position control of a direct drive arm

  • Lee, Jong-Soo;Kwon, Wook-Hyun;Choi, Kyung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.884-889
    • /
    • 1990
  • In this paper, a new hybrid position control algorithm for the direct drive arm is proposed. The proposed control is composed of discrete feedforward component and continuous feedback component. The discrete component is the nominal torque which approximately compensates the strong nonlinear coupling torques between the links, while the continuous control is a modified version of sliding mode control which is known to have a robust property to the disturbances of system. For the proposed control law, we give sufficient condition which guarantees the bounded tracking error in spite of the modeling errors, and the efficiency of the proposed algorithm is demonstrated by the numerical simulation of a three link manipulator position control with payloads and parameter errors.

  • PDF

The Ultimate Bound of Discrete Sliding Mode Control System with Short Sampling Period for DC Motor System (DC 모터 시스템을 위한 짧은 샘플링 시간을 갖는 이산슬라이딩 모드의 최종 수렴범위)

  • Park, Heum-Yong;Jo, Young-Hun;Park, Kang-Bak
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.245-248
    • /
    • 2010
  • Almost all of control schemes proposed so far have been designed in the continuous-time domain theoretically. Actual systems, however, have been implemented in the discrete-time domain since Micro Control Unit(MCU) and/or microprocessors have been used for the controllers. Thus, the overall system turned to be a sampled-data system, and generally speaking, the ultimate error cannot converge to zero in the actual system even though the proposed control algorithm showed the asymptotic stability in the continuous-time domain. In this paper, therefore, the ultimate error bound of a sampled data system with a short sampling period has been investigated. The ultimate error is shown to be related in the sampling period.

The Control of Large Scale System by Sliding Mode (슬라이딩 모드를 이용한 대규모 계통의 제어)

  • Chun, Hee-Young;Park, Gwi-Tae;Kuo, Chun Ping;Kim, Dong-Sik;Im, Hyeong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.190-194
    • /
    • 1987
  • This paper describes a new method for control of large-scale system by sliding mode. The concepts of control to large-scale system on the basis of VSS(Variable Structure System) control theory are used to decompose a large control problem into a two-level algorithm such that each subsystem is stabilized with local discontinuous controllers and higher level corrective control is designed to take into account the effect of interaction among the subsystems. In this paper, we show that each subsystem is controlled with repect to local continuous and higher level corrective control. This algorithm can be easily applied to multi-variable control system and obtained a continuous control in comparison With variable structure control systems. Two numerical examples are discussed as illustrations.

  • PDF

Cutting force regulation of microdrilling using the sliding mode control (슬라이딩 모드 제어를 이용한 마으크로 드릴의 절삭력 제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.842-846
    • /
    • 1997
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratios larger than 10) is gaining increased attention in a wide spectrum of precision production industries. Alternative methods such as EDM, laser drilling, etc. can sometimes replace mechanical micro-hole drilling but are not acceptable in PCB manufacture because they yield inferior hole quality and accuracy. The major difficulties in micro-hold drilling are related to wandering motions during the inlet stage, high aspect ratios, high temperature,etc. However, of all the difficulties, the most undesirable one is the increase of drilling force as the drill penetrates deeper into hold. This is caused mainly by chip related effects. Peck-drilling is thus widely used for deep hole drilling despite the fact that it leads to low productivity. Therefore, in this paper, a method of cutting force regulation is proposed to achieve continuous drilling. A proportional plus derivative (PD) and a sliding modecontrol algorithm will be implemented for controlling the spinle rotational frequeency. Experimental results will show that sliding mode control reduces the nominal cutting force and its variation better than the PD control, resulting in a number of advantages such as an increase in drill life, fast stabilization of the wandering motion, and precise positioning of the hole.

  • PDF