• Title/Summary/Keyword: Continuous hydrogen production

Search Result 76, Processing Time 0.024 seconds

Continuous Anaerobic H2 Production with a Mixed Culture (혐기성 수소 생산 공정의 연속운전)

  • Kim, Sang-Hyoun;Han, Sun-Kee;Youn, Jong-Ho;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.70-76
    • /
    • 2003
  • Continuous anaerobic hydrogen production with a mixed culture was investigated. With a sucrose concentration of 5g COD/L in the feed, hydrogen production exceeded $0.5mole\;H_2/mole\;hexose$ was found at the early stage, however it did not maintain longer than 9days. It was assumed that the failure was caused by insufficient active hydrogen producing bacteria in the reactor. Therefore, effects of pH control, repeated heat treatment and substrate concentration on sustainable continuous anaerobic hydrogen production was examined to find out operating conditions to sustainable hydrogen production. Decrease of hydrogen production was not overcome by only pH control at 5.3. Repeated heat treatment could recover hydrogen producing activity without any external inoculum supply. However, frequent heat treatment was needed because the treated sludge also showed the tendency in decrease of hydrogen production. With a sucrose concentration of 30g COD/L in the feed, hydrogen production maintained $1.0-1.4mole\;H_2/mole\;hexose$ in continuously stirred tank reactor and $0.2-0.3mole\;H_2/mole\;hexose$ in anaerobic sequencing batch reactor) for 24days. More than 90% of soluble organics in effluent was organic acids, in which n-butyrate was the most one.

  • PDF

Hydrogen Fermentation of the Galactose-Glucose Mixture (갈락토스-글루코스 혼합당 수소 발효)

  • Cheon, Hyo-Chang;Kim, Sang-Youn
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.4
    • /
    • pp.397-403
    • /
    • 2012
  • Galactose, an isomer of glucose with an opposite hydroxyl group at the 4-carbon, is a major fermentable sugar in various promising feedstock for hydrogen production including red algal biomass. In this study, hydrogen production characteristics of galactose-glucose mixture were investigated using batch fermentation experiments with heat-treated digester sludge as inoclua. Galactose showed a hydogen yield compatible with glucose. However, more complicated metabolic steps for galactose utilization caused a slower hydrogen production rate. The existence of glucose aggravated the hydrogen production rate, which would result from the regulation of galactose-utilizing enzymes by glucose. Hydrogen produciton rate at galactose to glucose ratio of 8:2 or 6:4 was 67% of the production rate for galactose and 33% for glucose, which could need approximately 1.5 and 3 times longer hydraulic retention time than galacgtose only condition and glucose only condition, respectively, in continuous fermentation. Hydrogen production rate, Hydrogen yield, and organic acid production at galactose to glucose ratio of 8:2 or 6:4 were 0.14 mL H2/mL/hr, 0.78 mol $H_2$/mol sugar, and 11.89 g COD/L, respectively. Galactose-rich biomass could be usable for hydogen fermenation, however, the fermentation time should be allowed enough.

Deduction of Optimum Factors for Hydrogen Production from Organic Resources using a Continuous Reaction Process (연속반응공정을 이용한 유기성자원으로부터 수소생산을 위한 최적인자도출에 관한 연구)

  • Kim, Choong Gon;Shin, Hyun Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.22-27
    • /
    • 2011
  • This study was performed to find out the optimum condition for hydrogen production by changing mixture ratio from 3:7(food waste water : swine wastewater) without pre-treatment of food wastewater and swine wastewater using a continuous reaction process. It was confirmed that hydrogen generation according to pH is the highest in a condition of pH 5.5, and that the optimum pH for hydrogen production in case of mixing food wastewater with swine wastewater is 5.5 through this. Hydrogen generation according to HRT showed high hydrogen generation rate in case of 4 days rather than 3 days, and this involves largely in vitality of hydrogen producing bacteria according to variation of the HRT value, so it is judged that HRT also acts as an important factor to hydrogen producing bacteria. The organic removal efficiency recorded a removal efficiency of maximum TS 52%, VS 71%, TSS 83% and VSS 89% at the 6th day of operation, and it was confirmed that organic removal efficiency is possible even through an hydrogen production process.

Hydrogen Production by the Immobilized Cells of Rhodopseudomonas sp. E15-1 (Rhodopseudomonas sp. E15-1의 균체 고정화에 의한 수소생성)

  • Bae, Moo;Park, Sun-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.74-80
    • /
    • 1989
  • For improvement of photobiological hydrogen production, Rhodopseudomonas El5-1, a photo-synthetic becterium capable of producing n high yield of hydrogen, was immobilized and conditions for hydrogen production by immobilized cells were examined. The optimum concentration for the combined matrix was obtained when sodium alginate was used at final concentration of 4%. The immobilized cells may reduce the inhibitory effects of nitrogen or oxygen. To minimize the diffusion resistance of the nutrients in alginate gel, the bend size less than 2 mm in diameter was desirable. The immobilized cells were also able to utilize n wide range of organic substrates for the production of hydrogen. The hydrogen producing activity of the immobilized cells was maintained for 20 days without loss of activity during semi-continuous operation of the reactor by feeding of new medium periodically and continuous production of hydrogen could be successfully performed for 30 days.

  • PDF

Hydrogen Production from Wastewater in Takju Manufacturing Factory by Microbial Consortium (탁주제조공장 폐수로부터 혼합균주에 의한 수소생산)

  • Lee, Ki-Seok;Bae, Sang-Ok;Kang, Chang-Min;Chung, Seon-Yong
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.199-204
    • /
    • 2008
  • Culture conditions for biological hydrogen production were investigated in wastewater of Takju manufacturing factory. Rhodobacter spaeroides KCTC1425, photosynthesis bacteria, and Enterobacter cloacae YJ-1, anaerobic bacteria were used. The hydrogen production were $195.3m{\ell}{\cdot}H_2/{\ell}$ broth for Rhodobacter spaeroides KCTC1425 and $271.8m{\ell}{\cdot}H_2/{\ell}$ broth for Enterobacter cloacae YJ-1 during 36 h. The hydrogen production increased with light intensity, and were highest over 12000Lux. In mixed culture of Rhodobacter spaeroides KCTC1425 and Enterobacter cloacae Y J-1, the optimum mixing ratio of hydrogen production was 20 and 80. Adding volume of yeast extract for maximum hydrogen production was 15 $g/{\ell}$, but there was no effect over that. $Na_2MoO_4$ was most effective among the inorganic salts, and the optimum volume was 0.4 $g/{\ell}$. In semi-continuous culture, total hydrogen production was $13086m{\ell}{\cdot}H_2/{\ell}$ broth for 144 h with operating period of 24 h.

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle Using Dual-zone Reactor and CeO2/ZrO2 Foam Device (Dual-zone reactor와 CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.27-37
    • /
    • 2017
  • In this study, an artificial solar simulator composed of a 2.5 kW Xe-Arc lamp and mirror reflector was used to carry out the solar thermal two step thermochemical water decomposition cycle which can produce high efficiency continuous hydrogen production. Through various operating conditions, the change of hydrogen production due to the possibility of a dual-zone reactor and heat recovery were experimentally analyzed. Based on the reaction temperature of Thermal-Reduction step and Water-Decomposition step at $1,400^{\circ}C$ and $1,000^{\circ}C$ respectively, the hydrogen production decreased by 23.2% under the power off condition, and as a result of experiments using heat recovery technology, the hydrogen production increased by 33.8%. Therefore, when a thermochemical two-step water decomposition cycle is conducted using a dual-zone reactor with heat recovery, it is expected that the cycle can be operated twice over a certain period of time and the hydrogen production amount is increased by at least 53.5% compared to a single reactor.

Sulfate Modulation for Hydrogen Production by Chlamydomonas reinhardtii in Continuous Culture (Chlamydomonas reinhardtii 연속 배양에서 수소생산을 위안 황 조절)

  • Kim, Jun-Pyo;Park, Tai-Hyun;Kim, Mi-Sun;Sim, Sang-Jun
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.453-457
    • /
    • 2005
  • We investigated the effect of sulfate re-addition on hydrogen production under sulfur-deprived condition. When the final concentration of sulfate to cell suspensions($0{\sim}120{\mu}M$) was increased, chlorophyll concentration, culture density, and total amount of $H_2$ produced, increased up to an optimal concentration of $30{\mu}M\;MgSO_4$. Maximum hydrogen volume was 236 mL $H_2/L$ culture at $30{\mu}M\;MgSO_4$. However, the addition of excess sulfate(above $MgSO_4\;60{\mu}M$) delayed the start of hydrogen production and the induction of hydrogenase. Accordingly, the final yield of hydrogen production was reduced. Using these results, we attempted the continuous and sustained hydrogen production by sulfate re-addition($30{\mu}M\;MgSO_4$) using a single C. reinhardtii culture for up to 4 cycles. In total, hydrogen production volume was 625 mL $H_2/L$ culture.

Effects of Solubility of SO2 Gas on Continuous Bunsen Reaction using HIx Solution (HIx 용액을 이용한 연속식 분젠 반응에 미치는 SO2용해도의 영향)

  • KIM, JONGSEOK;PARK, CHUSIK;KANG, KYOUNGSOO;JEONG, SEONGUK;CHO, WON CHUL;KIM, YOUNG HO;BAE, KI KWANG
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • The Sulfur-Iodine thermochemical hydrogen production process (SI process) consists of the Bunsen reaction section, the $H_2SO_4$ decomposition section, and the HI decomposition section. The $HI_x$ solution ($I_2-HI-H_2O$) could be recycled to Bunsen reaction section from the HI decomposition section in the operation of the integrated SI process. The phase separation characteristic of the Bunsen reaction using the $HI_x$ solution was similar to that of $I_2-H_2O-SO_2$ system. On the other hands, the amount of produced $H_2SO_4$ phase was small. To investigate the effects of $SO_2$ solubility on Bunsen reaction, the continuous Bunsen reaction was performed at variation of the amounts of $SO_2$ gas. Also, it was carried out to make sure of the effects of partial pressure of $SO_2$ in the condition of 3bar of $SO_2-O_2$ atmosphere. As the results, the characteristic of Bunsen reaction was improved with increasing the amounts and solubility of $SO_2$ gas. The concentration of Bunsen products was changed by reverse Bunsen reaction and evaporation of HI after 12 h.

Effects of Aeration on Bio-hydrogen (Bio-H2) Production in the Anaerobic Digestion (혐기성 소화시 aeration이 수소생성에 미치는 영향)

  • Lee, Myoung Joo;Jang, Hyun Sup;Hwang, Sun Jin;Jeong, Yeon Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.683-687
    • /
    • 2006
  • This research investigated the effect of aeration pretreatment for anaerobic seed sludge on hydrogen production. Aeration time for anaerobic sludge was maintained at 0, 1, 3, 6, 12, and 24 hours in batch tests. Two continuous anaerobic reactors (aerated and non-aerated) were also operated. All experiments were conducted at $35^{\circ}C$ using mineral salts-glucose (20 g/l) medium. Methane production decreased with the increase in aeration time. Aeration for 6 hours was determined as an optimum from the amount of hydrogen produced. Hydrogen was steadily produced in the continuous reactor seeded with aerated sludge while no methane production was observed. However, small amount of hydrogen was produced in the non-aerated reactor for short period of time from the start even though short HRT (2 days) and low pH (5.5) were maintained.

Effects of Pretreatment Time and pH low set value on Continuous Mesophilic Hydrogen Fermentation of Food Waste (열처리 시간과 pH 하한값이 음식물쓰레기 연속 중온 수소 발효에 미치는 영향)

  • Kim, Sang-Hyoun;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.343-348
    • /
    • 2011
  • Since 2005, food waste has been separately collected and recycled to animal feed or aerobic compost in South Korea. However, the conventional recycling methods discharge process wastewater, which contain pollutant equivalent to more than 50% of food waste. Therefore, anaerobic digestion is considered as an alternative recycling method of food waste to reduce pollutant and recover renewable energy. Recent studies showed that hydrogen can be produced at acidogenic stage in two-stage anaerobic digestion. In this study, the authors investigated the effects of pretreatment time and pH low set value on continuous mesophilic hydrogen fermentation of food waste. Food waste was successfully converted to $H_2$ when heat-treated at $70^{\circ}C$ for 60 min, which was milder than previous studies using pH 12 for 1 day or $90^{\circ}C$. Organic acid production dropped operational pH below 5.0 and caused a metabolic shift from $H_2/butyrate$ fermentation to lactate fermentation. Therefore, alkaline addition for operational pH at or over 5.0 was necessary. At pH 5.3, the result showed that the maximum hydrogen productivity and yield of 1.32 $m^3/m^3$.d and 0.71 mol/mol $carbohydrate_{added}$. Hydrogen production from food waste would be an effective technology for resource recovery as well as waste treatment.