Browse > Article
http://dx.doi.org/10.7316/KHNES.2012.23.4.397

Hydrogen Fermentation of the Galactose-Glucose Mixture  

Cheon, Hyo-Chang (Department of Environmental Engineering, Daegu University)
Kim, Sang-Youn (Department of Environmental Engineering, Daegu University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.23, no.4, 2012 , pp. 397-403 More about this Journal
Abstract
Galactose, an isomer of glucose with an opposite hydroxyl group at the 4-carbon, is a major fermentable sugar in various promising feedstock for hydrogen production including red algal biomass. In this study, hydrogen production characteristics of galactose-glucose mixture were investigated using batch fermentation experiments with heat-treated digester sludge as inoclua. Galactose showed a hydogen yield compatible with glucose. However, more complicated metabolic steps for galactose utilization caused a slower hydrogen production rate. The existence of glucose aggravated the hydrogen production rate, which would result from the regulation of galactose-utilizing enzymes by glucose. Hydrogen produciton rate at galactose to glucose ratio of 8:2 or 6:4 was 67% of the production rate for galactose and 33% for glucose, which could need approximately 1.5 and 3 times longer hydraulic retention time than galacgtose only condition and glucose only condition, respectively, in continuous fermentation. Hydrogen production rate, Hydrogen yield, and organic acid production at galactose to glucose ratio of 8:2 or 6:4 were 0.14 mL H2/mL/hr, 0.78 mol $H_2$/mol sugar, and 11.89 g COD/L, respectively. Galactose-rich biomass could be usable for hydogen fermenation, however, the fermentation time should be allowed enough.
Keywords
Hydrogen fermentation; Sugar mixture; Galactose; Glucose; Red algal biomass;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. K. Khanal, W. H. Chen, L. Li, and S. Sung, "Biological hydrogen production : Effects of pH and intermediate products", International Journal of Hydrogen Energy, Vol. 29, 2004, pp. 1123-1131.
2 S. H. Kim, S. K. Han, and H. S. Shin, "Feasibility of biohydrogen production by anaerobic co-digestion of food waste sewage sludge", International Journal of Hydrogen Energy, Vol. 29, 2004, pp. 1607-1616.   DOI   ScienceOn
3 H. Argun, and F. Kargi, "Bio-hydrogen production by different operational modes of dark and photofermentation: An overview", International Journal of Hydrogen Energy, Vol. 36, 2011, pp. 7443-7459.   DOI
4 J. Mathews, and G. Wang, "Methbolic pathway engineering for enhanced biohydrogen production", International Journal of Hydrogen Energy, Vol. 34, 2009, pp. 7404-7416.   DOI
5 C. C. Chen, and C. Y. Lin, "Biohydrogen production using an up-flow anaerobic sludge blanket reactor", Advances In Environmental Research, Vol. 7, 2003, pp. 695-699.   DOI   ScienceOn
6 J. Lay, Y. J. Lee, and T. Noike, "Feasibility of biological hydrogen production from organic fraction of municipal solid waste", Water Research, Vol. 33, 1999, pp. 2579-2586.   DOI   ScienceOn
7 D. S. Scott, "Hydrogen-the case for inevitability", International Journal of Hydrogen Energy, Vol. 29, 2004, pp. 225-227.   DOI   ScienceOn
8 C. Y. Lee, S. W. Lee, S. J. Hwang, "Effect of Heat Treatment on the Start-up Performance for Anaerobic Hydrogen Fermentation of Food Waste", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 6, 2011, pp. 765-771.   과학기술학회마을
9 D. H. Kim, M. K. Lee, S. Y. Lim, and M. S. Kim, "Dark Fermentative Hydrogen Production using the Wastewater Generated from Food Waste Recycling Facilities", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 3, 2011, pp. 326-332.   과학기술학회마을
10 M. Ike, D. Inoue, T. Miyano, T. T. Liu, "Microbial population dynamics during start-up of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project", Bioresour Technology, Vol. 101, No. 11, 2010, pp. 3952-3957.   DOI
11 O. S. Kim, H. N. Son, D. H. Kim, D. J. Jeon, Y. W. Rhee, M. S. Kim, "Biohydrogen Production from Food Waste by Two-Stage (Lactate+Photo)-Fermentation Process", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 3, 2011, pp. 333-339.   과학기술학회마을
12 I. A. Panagiotopoulos, R. R. Bakker, T. Vrije, and E. G. Koukios, "Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds", Bioresource Technology, Vol. 102, 2011, pp. 11204-11211.   DOI
13 A. Jensen, "Present and future needs for algae and algal products", Hydrobiologia, Vol. 260/261, 1993, pp. 15-23.   DOI
14 J. I. Park, J. Lee, S. J. Sim, and J. H. Lee, "Production of hydrogen from marine macro-algae biomass using anaerobic sewage sludge microflora", Biotechnology and Bioprocess Engineering, Vol. 14, 2009, pp. 307-315.   DOI
15 E. Y. Park, S. M. Jeong, Y. J. Kim, and D. H. Lee, "Review on Hydrolysis of the Macroalgae for Production of Bioethanol", Journal of Korea Society of Waste Management, Vol. 29, No 4, 2012, pp. 323-333.
16 K. S. Kim, J. H. Kim, M. G. Shin, G. M. Jo, S. Y. Kim, J. K. Shim, S. B. Kim, Y. J. Kim, M. H. Lee, S. B. Lee, and H. J. Ryu, "Feasibility Study on the Utilization of Algae for the Bio- Energy Production", The Ministry of Knowledge Economy, 2007-N-BI17-P-01, 2007, pp. 16-31.
17 http://fs.fips.go.kr/index.jsp (assess date: November 28, 2011)
18 Ministry for Food,, Agriculture and Fisheries, Korea, R&D Roadmap (Feasibility Study) for Commercial Culture of Marine Algae and its Use as a Bioenergy Source, No. 11-1541000-000242-01, 2009.
19 J. H. Park, J. J. Yoon, H. D. Park, Y. J. Kim, D. J. Lim, and S. H. Kim, "Feasibility of biohydrogen production from Gelidium amansii", International Journal of Hydrogen Energy, Vol. 36, 2011, pp. 13997-14003.   DOI
20 J. H. Park, J. Y. Hong, H. C. Jang, S. G. Oh, S. H. Kim, J. J. Yoon, and Y. J. Kim, "Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation", Bioresource Technology, Vol. 108, 2012, pp. 83-88.   DOI   ScienceOn
21 L. F. Bisson, D. M. Coons, A. L. Kruckeberg, and D. A. Lewis, "Yeast Sugal Transporters", The Journal of Steroid Biochemistry and Molecular Biology, Vol. 28, No. 4, 1993, pp. 259-308.
22 A. Fangkum, and A. Reungsang, "Biohydrogen production from ugarcane bagasse hydrolysate by elephant dung: Effects of initial pH and substrate concentration", International Journal of Hydrogen Energy, Vol. 36, 2011, pp. 8687-8696.   DOI
23 APHA, AWWA, WEF. Standard methods for the examination of Water and Wastewater. 20th ed. Washington D.C., USA, 1998.
24 S. Ozcan, and M. Johnston, "Function and Regulation of Yeast Hexose Transporters", Microbiology and Molecular Biology Reviews, Vol. 63, No. 3, 1999, pp. 554-569.
25 K. Kimata, H. Takahashi, T. Inada, P. Postma, and H. Aiba, "cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli", Biochemistry, Vol. 94, 1997, pp. 12914-12919.
26 J. D. Keating, J. Robinson, R. J. Bothast, J. N. Saddler, and S. D. Mansfield, "Characterization of a unique ethanologenic yeast capable of fermenting galactose", Enzyme Microb. Technol., Vol. 35, 2004, pp. 242-253.   DOI
27 R. J. Trumby, "Glucose repression in the yeast Saccharomyces cerevisiae", Molecular Microbiology, Vol. 6, 1992, pp. 15-21.   DOI   ScienceOn
28 D. H. Kim, and M. S. Kim, "Thermophilic fermentative hydrogen production from various carbon sources by anaerobic mixed cultures", International Journal of Hydrogen Energy, Vol. 37, 2012, pp. 2021-2027.   DOI
29 L. Jianzheng, R. Nanqi, L. Baikun, Q. Zhi, and H. Junguo, "Anaerobic biohydrogen production from monosaccharides by a mixed microbial community culture", Bioresour Technol, Vol. 99, 2008, pp. 6528-6537.   DOI
30 R. S. Prakasham, P. Brahmaiah, T. Sathish, and R. K. Sambasiva, "Fermentative biohydrogen production by mixed anaerobic consortia: impact of glucose to xylose ratio", International Journal of Hydrogen Energy, Vol. 34, 2009, pp. 9354-9361.   DOI
31 C. Y. Lin, and C. H. Lay, "A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge micoflora", International Journal of Hydrogen Energy, Vol. 30, 2005, pp. 285-292.   DOI