Browse > Article

Sulfate Modulation for Hydrogen Production by Chlamydomonas reinhardtii in Continuous Culture  

Kim, Jun-Pyo (Department of Chemical Engineering, Sungkyunkwan University)
Park, Tai-Hyun (School of Chemical and Biological Engineering, Seoul National University)
Kim, Mi-Sun (Biomass Research Team, Korea Institute of Energy Research)
Sim, Sang-Jun (Department of Chemical Engineering, Sungkyunkwan University)
Publication Information
KSBB Journal / v.20, no.6, 2005 , pp. 453-457 More about this Journal
Abstract
We investigated the effect of sulfate re-addition on hydrogen production under sulfur-deprived condition. When the final concentration of sulfate to cell suspensions($0{\sim}120{\mu}M$) was increased, chlorophyll concentration, culture density, and total amount of $H_2$ produced, increased up to an optimal concentration of $30{\mu}M\;MgSO_4$. Maximum hydrogen volume was 236 mL $H_2/L$ culture at $30{\mu}M\;MgSO_4$. However, the addition of excess sulfate(above $MgSO_4\;60{\mu}M$) delayed the start of hydrogen production and the induction of hydrogenase. Accordingly, the final yield of hydrogen production was reduced. Using these results, we attempted the continuous and sustained hydrogen production by sulfate re-addition($30{\mu}M\;MgSO_4$) using a single C. reinhardtii culture for up to 4 cycles. In total, hydrogen production volume was 625 mL $H_2/L$ culture.
Keywords
Continuous hydrogen production; Chlamydomonas reinhardtii; sulfur deprivation; photosynthesis; sulfate modulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gaffron, H. and J. Rubin (1942), Fermentative and photochemical production of hydrogen in algae, J. Gen. Physiol. 26, 219-240   DOI   PUBMED
2 Kosourov, S., A. Tsygankov, M. Seibert, and M. L. Ghirardi (2002), Sustained hydrogen photoproduction by Chlamydomonas reinhardtii : Effects of Culture Parameters, Biotechnol. Bioeng. 78, 731-740   DOI   ScienceOn
3 Kim, J. P., C. D. Kang, S. J. Sim, M. S. Kim, T. H. Park, D. H. Lee, D. J. Kim, J. H. Kim, Y. K. Lee, D. Pak (2005) Cell age optimization for hydrogen production induced by sulfur deprivation using a green alga Chlamydomonas reinhardtii UTEX 90, J. Microbiol. Biotechnol. 15, 131-135
4 Das, D. and V. Nejat (2001), Hydrogen production by biological processes: a survey of literature, Int. J. Hydrogen Energy 26, 13-28   DOI   ScienceOn
5 Melis, A, L. Zhang, M. Forestier, M. L. Ghirardi, and M. Seibert (2000), Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii, Plant Physiol. 122, 127-135   DOI   ScienceOn
6 Antal, T. K., T. E. Krendeleva, T. V. Laurinavichene, V. V. Makarova, A. A. Tsygankov, M. Seibert, and A. B. Rubin (2001), The relationship between the photosystem 2 activity and hydrogen production in sulfur deprived Chlamydomonas reinhardtii cells, Biochem. Biophys. Mol. BioI. 381, 371-374
7 Zhang, L., T. Happe, and A. Melis (2002), Biochemical and morphological characterization of sulfur-deprived and $H_2$-producing Chlamydomonas reinhardtii (green alga), Planta 214, 552-561   DOI   ScienceOn
8 Laurinavichene, T., I. Tolstygina, A. Tsygankov (2004) The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii, J. Biotechnol. 114, 143-151   DOI   PUBMED   ScienceOn
9 Gong, Gyeong Taek, Sang Jun Sim, Daewon Pak, Mi Sun Kim, and Tai Hyun Park (2003), Optimization of organic compounds and hydrogen production in dark fermentation using Chlamydomonas reinhardtii, Korean J. Biotechnol. Bioeng. 18, 51-57
10 Hase, E., Y. Morimura, S. Mihara, and H. Tamiyama (1958), The role of sulfur in the cell division of Chlorella, Arch. Microbiol. 31, 87-95
11 Kosourov, S, M. Seibert, and M. L. Ghirardi (2003) Effect of extracellular pH on the metabolic pathways in sulfur-deprived, $H_2$-producing Chlamydomonas reinhardtii cultures, Plant Cell Physiol. 44, 146-155   DOI   ScienceOn
12 Antal, T. K., T. E. Krendeleva, T. V. Laurinavichene, V. V. Makarova, M. L. Ghirardi, A. B. Rubin, A. A. Tsygankov, and M. Seibert (2003) The dependence of algal $H_2$, production on Photosystem II and $O_2$ consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells, Biochimi. Biophys. 1607, 153-160   DOI   ScienceOn
13 Ghirardi, M. L., L. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum, and A. Melis (2000), Microalgae: a green source of renewable $H_2$, Trends Biotechnol. 18, 506-511   DOI   ScienceOn
14 Dincer, I. (2002), Technical and exergetic aspects of hydrogen energy systems, Int. J. Hydrogen Energy 27, 265-285   DOI   ScienceOn
15 Melis, A. (1999), Photosystem- II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo?, Trends Plant Sci. 4, 130-135   DOI   PUBMED   ScienceOn
16 Harris, E. H. (1989), The Chlamydomonas sourcebook, p607 -608. Academic Press, Inc., San Diego, California, USA
17 Hopkins, W. G. and N. P. A. Huner (2004), Introduction to plant physiology, 3rd ed., p63-166, John Wiley & Sons, Inc., Hoboken, New Jersey, USA
18 Tsygankov, A., S. Kosourov, M. Seibert, M. L. Ghirardi (2002) Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures, Int. J. Hydrogen Energy 27, 1239-1244   DOI   ScienceOn
19 Dunn, S. (2002), Hydrogen futures: toward a sustainable energy system, Int. J. Hydrogen Energy 27, 235-264   DOI   ScienceOn