• Title/Summary/Keyword: Continuous Welded Rail

Search Result 98, Processing Time 0.025 seconds

Rail Structure Interaction Analysis for the Curved-Elevated Viaducts (곡선구간을 포함한 고가철도의 레일 구조물 상호작용 해석)

  • Cho Eu-Kyeong;Park Sung-Ryung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.376-381
    • /
    • 2005
  • This paper presents the rail structure interaction analysis of the elevated viaducts which contains the curved alignments with smallest radius of 300 metre. The aim of this study is to check the compatibility between the track and the curved structure in order to verify the safety of the continuous welded rail track under service conditions. To perform the rail structure interaction analysis, nonlinear static rail structure interaction calculation is implemented. The bridge structures, the rails and the track behaviour are modelled according to the UIC774-3 and the Eurocode prEN1991-2 recommendations. Criteria in Eurocode prEN1991-2 are investigated to check the compatibility between the track and the structure for the rail structure interaction effects.

  • PDF

Analysis of the Dynamic Behavior and Continuous Welded Rail of LRT Steel Bridge (경량전철 강교량에 대한 이동하중하 동적거동 및 장대레일 축력의 해석적 평가)

  • Seong Taek-Ryong;Kim Cheol-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.564-571
    • /
    • 2005
  • Two-plate girder bridge and narrow steel box girder bridge are suggested for the steel wheel AGT system. For these bridge system, rail-bridge interaction analysis was carried out and dynamic behavior of these bridges was investigated. The result shows that all the estimated parameters satisfy the criteria concerned. As a result these two suggested bridge systems have enough performance to be competitive for the LRT elevated structures.

  • PDF

Effect of Track Resistance on Linear Thermal Buckling Characteristics of CWR (도상이 장대 레일의 선형 온도 좌굴에 미치는 영향)

  • 강영종;임남형;신정렬;양재성
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.580-587
    • /
    • 1998
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths in accordance with rolling and handling technology. The joints cause many drawbacks in the track and lead to significant maintenance cost. So, railroad engineers became interested in eliminating joints to increase service loads and speeds by improving rolling, welding, and fastening technology, Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. But in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal and vehicle loads. Thermal loads are caused by an increase in the temperature of railway track. In this paper, CWR track model and CWRB program are developed for linear buckling analysis using finite element method(FEM). The finite element discretization is used with a total of 14 degrees of freedom for each rail element. The stiffness of the fastener, tie, and ballast bed are included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented in the paper.

  • PDF

Longitudinal Force Analysis of CWR on High Speed Rail Bridges (고속철도 교량상의 장대레일 축력 해석)

  • 이지하;양신추;이종득
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.556-563
    • /
    • 1998
  • Railway bridges have a significant effect on the stress and displacement of continuous welded rail(CWR). Longitudinal compression force at high temperature, combined breaking or acceleration forces can introduce track buckling. On the other hand, longitudinal tensile forces, associated with low temperatures, in combination with breaking forces may break rail. Therefore, it is very important to work out thorough counter measures for those problems, specially in high speed rail which high safety is required. The exact evaluation of longitudinal force of rail has the key to the solution. The main aim of the present paper is to examine whether the longitudinal force of CWR's on Kyung-Bu-HSR satisfy the criteria to be fulfilled in the design of railway bridge. The analyses are carried out by using "CWRAP" program which was developed by our research group. The ballast resistance and breaking force effects on the longitudinal force of CWR are investigated.

  • PDF

Analysis of Rail Force considering Rail/Bridge Interation (레일/교량 상호작용을 고려한 레일축력 해석)

  • 김병석;김영진;강재윤
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.71-78
    • /
    • 1998
  • Recently, continuous welded rail (CWR) track has been adopted for railway track structure of great advantages of reducing maintenance costs, and of increasing life time of track components and the comfort of passengers. But, in this case, a temperature or mechanical load will result in high stress and the track breakage or buckling may occur Especially when the CWR is laying on the bridge structure, the relative displacement of these structure can be increased and this results in the instability of track. In this paper, the main factors affect on the longitudinal rail force are discussed and the computer program is developed for the analysis of rail force considering the interactions with sub-structure.

  • PDF

The Fatigue Life Evaluation of CWR based on the Rail Grinding (레일연마를 고려한 장대레일의 피로수명 평가)

  • Kong, Sun-Young;Sung, Deok-Yong;Park, Yong-Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1191-1198
    • /
    • 2015
  • In this study, vehicle/track interaction analysis by the Saemaul powered vehicle was carried out. The prediction equation for the bending stress of rail was estimated using the rail bending stress by the rail surface irregularities at welds. Also, the fatigue analysis using a S-N curve of welds in the conventional railway was carried out. We estimated the fatigue life of CWR by the fracture probability. By the rail grinding, the fatigue life of CWR was evaluated in consideration to reduce the rail bending stress through removing the rail surface irregularities. Therefore, it presented the fatigue life of CWR according to the rail grinding execution plan in the conventional railway.

Design and Construction Method Considering Turnout for High-speed on The Bridge with Concrete Track (콘크리트궤도에 고속분기기 설치를 고려한 교량설계 및 시공기법)

  • Kim, In-Jae;Oh, Sei-Young;Joo, Hwan-Joong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.71-79
    • /
    • 2008
  • The concrete track is being used at the Phase II of the Kyeongbu High Speed Railway and New Constructed Honam High Speed Railway. When it makes a decision of bridge type, It has to consider about longitudinal forces of Continuous Welded Rail, Displacement at the end of bridges, Up-lift forces for fastener on the track. If it is installed turnout on the bridge, There is likelihood of the deck twist by applying the each difference longitudinal forces at the 4 each rails and the buckling by concentration of rail stress at the turnout. Moreover, If it is installed turnout on the continuous bridge and REJ(Rail Expansion Joint) on the main track or turnout track. It is hard to keep a safety for rail because of coming to twist or folding at the expansion of deck on the turnout track. Therefore when it is a design of bridge with turnout. It need to take bridge type to minimize an additional axial force and a displacement at the turnout. This paper makes a study of the composite steel arch bridge that is able to resolve criteria requirements of safety for track with turnout and suggest a helpful design method for bridge considering track with turnout by being based on design and construction method of Eonyang Bridge at the north part of Ulsan Station in Phase II of the Kyeongbu High Speed Railway.

  • PDF

Bending Fatigue Life Assessment of Aged CWR using the Field Test (현장측정을 통한 노후레일의 휨 피로수명 평가)

  • Park, Yong-Gul;Sung, Deok-Yong;Park, Hong-Kee;Kong, Sun-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.317-325
    • /
    • 2008
  • As a result of recent research, it is reported that the periodic replacements criterion of rails is able to extend as grinding rail surface and using the continuous welded rail (CWR). This study evaluated correlation between conditions of track and load capacity of rail by analysing the dynamic response of track while the metro train is running. Also, it was converted the measured stress waveform into stress frequency histogram by the rain-flow counting methods, and then accumulated fatigue damage ratio and remaining service life of laid rail were calculated so as the apply the equivalence of stress to S-N curve of a new welded rail. Finally, this study suggests a revision of the periodic replacements criterion of CWR, which was based on accumulated passing tonnage, classified by the types and conditions of track system.

The Effect of the Tied Sleeper on the Maintenance Work in the Rail Expansion Joint Zone (레일신축 이음부 유지보수 작업에 대한 침목결속의 영향)

  • Bae, Hyun-Ung;Kang, Tae-Ku;Choi, Jin-Yu;Jeong, Won-Ik;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2125-2128
    • /
    • 2011
  • The continuous welded rail(CWR) track without the rail expansion joint has many advantages over the conventional track in a variety of fields including the speed-up and the ride comport. However, due to the excessive axial force in the CWR and the track-bridge interactive behavior, inevitably, the rail expansion joint must be installed at the vulnerable zone such as the bridge end zone, etc. In this rail expansion joint zone, the frequency of the maintenance work to repair the track irregularity is on the rise. This is because that the creep of the sleeper is occurred in the moveable zone of the rail expansion joint. In this study, among the several options for reducing the track irregularity on the rail expansion joint zone, the application and efficiency of the tied sleeper is investigated. Field test construction has been conducted, then the progress of the track irregularity and the frequency of the maintenance work are analyzed before and after the filed test construction.

  • PDF

The Fatigue Life Evaluation of Aged Continuous Welded Rail on the Urban Railway (도시철도 장기 사용레일의 피로수명 평가)

  • Kong, Sun-Young;Sung, Deok-Yong;Park, Yong-Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.821-831
    • /
    • 2013
  • As a result of recent research, it is reported that the periodic replacements criterion of rails is able to extend as grinding rail surface and using the continuous welded rail (CWR). In this study, we carried out fatigue tests on existing laid rails. Based on the test results, an S-N curve expressing the remaining life of laid rails at a fracture probability of 50% was obtained using weighted probit analysis suitable for small-sample fatigue data sets. As rails used for testing had different histories in terms of accumulated tonnage, the test data were corrected to average out the accumulated tonnage. We estimated the remaining service lives for laid rails on the urban railway using equations developed in the past to estimate rail base bending stress and that surface irregularities into consideration. Therefore, estimating the remaining service life of laid rails showed that the rail replacement period could be extended over 200 MGT, although it is necessary to remove longitudinal rail surface irregularities at welds by grinding. Also, the fatigue test results under fatigue limit, Haibach's rule appling half slope of S-N curve under the fatigue limit was considered more reasonable than modified Miner's rule for estimating rail fatigue life.