• Title/Summary/Keyword: Continuous Strength Method

Search Result 246, Processing Time 0.03 seconds

Detection of Fracture Signals of Low Prestressed Steel Wires in a 10 m PSC Beam by Continuous Acoustic Monitoring Techniques (연속음향감지기법을 이용한 긴장력이 감소된 10 m PSC보의 PS 강선 파단음파 감지)

  • Youn, Seok-Goo;Lee, Chang-No
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.113-122
    • /
    • 2010
  • Corrosion of prestressing tendons and wire fractures in grouted post-tensioned prestressed concrete bridges have been considered as a serious safety problem. In bridge evaluation the condition of prestressing tendons should be inspected, and if corroded tendons are found, the loss of tendon area should be included when we calculate the ultimate strength. In the previous study, it was evaluated that continuous acoustic monitoring techniques could be considered as a reliable non-destructive method for detecting wire fractures of fully grouted post-tensioned prestressing tendons. In the present study, an experimental test was performed for detecting wire fractures of post-tensioned prestressing tendons which are prestressed lower than current design level. A 10 m prestressed concrete beam was fabricated, which included two tendons prestressed 66 percentage and 40 percentage of tensile strength, respectively. The corrosion of two tendons was induced by an accelerated corrosion equipment and the test beam was monitored by using seven acoustic sensors and a continuous acoustic monitoring system. From each prestressing tendon, two acoustic signals of wire fractures were successfully detected and source locations were estimated within 20 mm error. Based on the test results, it is considered that continuous acoustic monitoring techniques can be applied to detect low-prestressed wire fracture in fully grouted post-tensioned prestressed concrete beams.

A Study on the Fabrication of Metal Fiber by Rapid Solidification Process (급냉응고법에 의한 금속 섬유제조에 관한 연구)

  • Baik, Nam-Ik;Hur, Sung-Kang;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.9 no.5
    • /
    • pp.396-402
    • /
    • 1989
  • Metal fibers of Al and stainless steel were fabricated by the PDME method and the Taylor process. Tensile strength of metal fiber produced by both the PDME method and the Taylor process was much higher than that of conventionally solidified materials. Utilizing the PDME method, Al fiber with $100\;{\mu}m$ was fabricated under Ar gas atmosphere, and stainless steel fiber with $50\;{\mu}m$ was fabricated under 0.06 Torr vacuum. Continuous fiber of stainless steel was made by the Taylor process and the surface of this fiber was smother than that fabricated by the PDME method.

  • PDF

Strengthening of perforated walls in cable-stayed bridge pylons with double cable planes

  • Cheng, Bin;Wu, Jie;Wang, Jianlei
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.811-831
    • /
    • 2015
  • This paper focuses on the strengthening methods used for improving the compression behaviors of perforated box-section walls as provided in the anchorage zones of steel pylons. Rectangular plates containing double-row continuous elliptical holes are investigated by employing the boundary condition of simple supporting on four edges in the out-of-plane direction of plate. Two types of strengthening stiffeners, named flat stiffener (FS) and longitudinal stiffener (LS), are considered. Uniaxial compression tests are first conducted for 18 specimens, of which 5 are unstrengthened plates and 13 are strengthened plates. The mechanical behaviors such as stress concentration, out-of-plane deformation, failure pattern, and elasto-plastic ultimate strength are experimentally investigated. Finite element (FE) models are also developed to predict the ultimate strengths of plates with various dimensions. The results of FE analysis are validated by test data. The influences of non-dimensional parameters including plate aspect ratio, hole spacing, hole width, stiffener slenderness ratio, as well as stiffener thickness on the ultimate strengths are illustrated on the basis of numerous parametric studies. Comparison of strengthening efficiency shows that the continuous longitudinal stiffener is the best strengthening method for such perforated plates. The simplified formulas used for estimating the compression strengths of strengthened plates are finally proposed.

Construction Method and Control System of the Heat of Hydration for Inchon International Airport Elevated Road Way (인천국제공항 여객터미널 전면 고가 교량 공사 시공방법 및 수화열 대책)

  • 임채만;박명웅;조용기;조선규;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.869-881
    • /
    • 1999
  • Inchon International Airport Elevated Road Way is located between the Passenger Terminal Building and Transportaion Center which are Inchon International Airport core construction projects. The deck of the bridge is consists of 5-span or 6-span continuous pre-stressed concrete slab. Steel form has been used to enhance the quality of texture on concrete slab. Steel form has been used to enhance the quality of texture on concrete surface, lower surface of deck slab with the two way arch has been manufactured by highly professional manner in order to get an beautiful exterior architectural looks. The prestressed concrete deck slab is mass concrete structures with a high-specified concrete strength and a varying section in the range of 0.95-2.8m thickness. Therefore high risks of thermal cracking occurrence by heat of hydration highly are expected. To resolve such problem, we adopted type 1 cement and pipe cooking method at construction site through mass concrete specimen test and 3-dimensional analysis. For Pipe cooling we used 25mm diameter stainless pipes with wrinkles. Cooling pipe with spacing 50-60cm has been installed. And continuous pipe cooling with cooling water of 15$^{\circ}C$ was conducted for 2days. In present 8 span of all 29 spans construction has been completed. No thermal cracking heat hydration has been observed yet.

  • PDF

A Design Method of Gear Trains Using a Genetic Algorithm

  • Chong, Tae-Hyong;Lee, Joung sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.62-70
    • /
    • 2000
  • The design of gear train is a kind of mixed problems which have to determine various types of design variables; i,e., continuous, discrete, and integer variables. Therefore, the most common practice of optimum design using the derivative of objective function has difficulty in solving those kinds of problems and the optimum solution also depends on initial guess because there are many sophisticated constrains. In this study, the Genetic Algorithm is introduced for the optimum design of gear trains to solve such problems and we propose a genetic algorithm based gear design system. This system is applied for the geometrical volume(size) minimization problem of the two-stage gear train and the simple planetary gear train to show that genetic algorithm is better than the conventional algorithm solving the problems that have continuous, discrete, and integer variables. In this system, each design factor such as strength, durability, interference, contact ratio, etc. is considered on the basis of AGMA standards to satisfy the required design specification and the performance with minimizing the geometrical volume(size) of gear trains

  • PDF

Case Studies of Automatic Measurement and strength for Damage in the Public Tunnel (공용중인 터널의 변상에 대한 보강 및 자동화계측 사례)

  • Han Ja-Jung;Kim Young-Ho;Jang Gi-Soo;Kweon Young-Jung;Ahn Sang-Ro
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.270-281
    • /
    • 2005
  • An especial attention for old tunnel safety is required on increasing of The various tunnel recently. Specially, the lining investigation method of the old tunnel will be able to presume condition of concrete lining indirectly. Because it is many restriction thought of environment and ground condition investigation method of tunnel lining rear. This study carried out section & convergence measurement of part which was deformed in tunnel lining. It had been observed for the change of tunnel behavior with a continuous measurement. It has been analyzed for a cause of tunnel deformation and inspected for the effect after a repair-reinforcement to tunnel compared with the effect before those by structure analysis. By establishing automatic measurement system after repair-reinforcement to tunnel, it would be accomplished to convergence measurement continually. As a result, it was observed that deflection and deformation of tunnel was convergent. but it should be followed to a continuous maintenance because of unstable ground condition, cause of inner tunnel, environment. The railroad tunnel which was executed a reinforcement of the tunnel lining must investigate the close condition of reinforcement lining and concrete lining.

  • PDF

Development of Evaluation Technology of Mechanical Properties Using Continuous Indentation Method (연속압입시험법을 이용한 소재의 기계적 물성 평가기술 연구)

  • Lee, Jeong-Hwan;Ok, Myoung-Ryul;Lee, Yun-Hee;Ahn, Jeong-Hoon;Kwon, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.703-708
    • /
    • 1997
  • Continuous indentation test is a very powerful method to monitor the materials reliability since it is very simple, easy and almost non-destructive. It can provide material properties such as elastic modulus, yield strength, work-hardening exponent, etc., than the conventional hardness test. In our study, the true stress-strain curve is derived from the indentation load-depth curve. For this, average indentation strain is defined and the flow stress is obtained from the analysis of the indentation stress field. The residual stress is analyzed from the variation of the indentation behavior with the applied residual stress. And the estimation of fracture characteristic is tried by considering the conventional fracture toughness modeling and the stress/strain state under the spherical indenter.

  • PDF

Development of Wire Temperature Prediction Method in a Continuous Dry Wire Drawing Process Using the High Carbon Steel (고탄소강의 연속 건식 신선 공정에서 선재의 온도 예측 기법 개발)

  • Kim, Yeong-Sik;Kim, Dong-Hwan;Kim, Byeong-Min;Kim, Min-An;Park, Yong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.330-337
    • /
    • 2001
  • Wire drawing process of the high carbon steel with a high speed is usually conducted at room temperature using a number of passes or reductions through consequently located dies. In multi-stage drawing process, temperature rise in each pass affects the mechanical properties of final product such as bend, twist and tensile strength. Also, this temperature rise during the deformation is the reason that the wire in drawing process is broken by the embrittlement due to rapid strain aging effect. This paper presents the estimation of the wire temperature for the multi-stage wire drawing process. Using the proposed calculation method of wire temperature, temperature rise at deformation zone as well as temperature drop in block considering the heat transfer between the block and wire were calculated. As these calculated wire temperatures were applied to the real industrial fields, it was known that the calculated results were in a good agreement with the measured wire temperature.

The Review of the Direction of Improvement of Oriental Medicine (한의학의 발전 방향 검토)

  • Shin, Gil Cho
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • It is difficult to combine oriental and western medicine. Each medicine has a different academic background, perspective on the world, and studying methodology. The claim that two paradigms can not be combined is not obtained from an actual verification, but this means it is so hard to combine two medicines having different backgrounds. The amalgamation of oriental and western medicine should be phased in on the basis of the continuous reciprocal understanding and commitment. First, the strength and weakness of each medicine over the treatment and research are required to be identified. Then, a few complementary areas can be chosen enabling a trial of fusion on a small scale. A cycle of problem solving and a new research can be set by analyzing research results obtained through the implementation over a period of time. In other words, the researchers of oriental and western medicine should repeat a continuous and gradual complementary research process by identifying issues to be improved and complemented through a consensus. Once the methodology obtained through the process of problem solving and proficient implementation is established in a stable condition, a method to widen the fusion area by expanding the operating area and implementation method can be chosen. However, the integral system of oriental medicine shouldn't be substituted by mechanical idea or reductionism. What should be done primarily for oriental medicine is to objectify things through quantification. In particular, the oriental treatment should accept the microscopic diagnosis to determine the structure and observe the biochemical change.

  • PDF

Inelastic Design of Continuous-Span Composite Plate Girder Bridges by LRFD Method (비탄성 설계법에 의한 플레이트 거더 연속교의 LRFD 설계)

  • Cho, Eun Young;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.469-481
    • /
    • 2008
  • The inelastic design of the three-span continuous composite plate girder with consideration of moment redistribution over the interior pier is performed using the LRFD method. The design of the girder section, based on the inelastic method, is compared with that by the conventional elastic design. The length of the center span for the three-span continuous bridge ranges from 40m to 70m and the relative ratio of the span length is assumed to be 4:5:4. Although the AASHTO- LRFD specifications are applied in the design of the composite girder, the recently proposed new design live load is used. After determining the maximum positive and negative sections by the elastic design for various limit states, the amount of moment redistributed to the maximum positive moment section is calculated. With the increased design moment due to moment redistribution from the interior pier, the maximum positive section designed by the elastic method is checked for the strength limit state and the service limit state. The maximum negative moment section is redesigned by reducing the size of the steel girder relative to the section designed by the elastic method and the new section is checked for the service limit state. Based on the design results for the five bridges considered in this study, it is estimated that about 23% of steel can be saved in the interior pier section if it is designed by the inelastic method compared with that designed by the elastic method.